Browse > Article

Purification and Characterization of an Antifungal Antibiotic from Bacillus subtilis LAM 97-44  

Lee, No-Woon (Department of Microbiological Engineering, KonKuk University)
Kwon, Tae-Jong (Department of Microbiological Engineering, KonKuk University)
Yi, Dong-Heui (Department of Microbiological Engineering, KonKuk University)
Publication Information
Applied Biological Chemistry / v.46, no.2, 2003 , pp. 69-73 More about this Journal
Abstract
A novel antifungal antibiotic for azole-resistant Candida albicans was purified from the culture broth of Bacillus subtilis LAM 97-44 by butanol extraction, Diaion HP-20 and Dowex-50 adsorption chromatography, silica gel flash chromatography followed by HPLC and designated LAM-44A. LAM-44A was stable for 60 min at $100^{\circ}C$, and pH range from 2 to 10. MIC values were observed at $0.5-3.5\;{\mu}g/ml$ against various Candida albicans strains. The antibiotic showed no cytotoxicity for S180, MKN-45, P388, HeLa and 373 at the concentration of 1 mg/ml. LAM-f4A was colorless powder soluble in water, methanol, ethanol, butanol and negative to ninhydrin reaction. The antibiotic had maximum absorption at 273 nm in methanol, and melting point was $202^{\circ}C$. The molecular weight and formula were determined to be 282 and $C_{14}H_{34}O_5$ by $^1H-NMR,\;^{13}C-NMR$, IR spectrum and elemental analysis.
Keywords
Bacillus subtilis LAM 97-44; antifungal antibiotic; azole-resistant Candida albicans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Strohl, W. R. (1997) In Industrial antibiotics: Today and the future. Strohl, W. R. (ed.), Biotechnology of antibiotics (2nd ed.), Mercel Dekker, New York, pp. 3-47
2 Kim, Y. S. and Kim, S. D. (1994) Antifungal mechanism and properties of antibiotic substances produced by Bacillus subtilis YB-70 as a biological control agent. J. Microbiol. Biotechnol. 4,296-304
3 Capobianco, J. O., Zakula, D., Coen, M. L. and Goldman, R. C. (1993) Anti-Candida activity of cispentacin: The active transport by amino acid permeases and possible mechanisms of action. Biochem. Biophys. Res. Commun. 190, 1037-1044   DOI   ScienceOn
4 Jeong, Y. K, Shin, Y. J., Jung, M. J., Joo, W H. and Choi, J. S. (2002) Structural analysis of the antifungal antibiotic from Bacillus sp. YJ-63. Kor. J. Microbiol. Biotechnol. 30, 21-25
5 Lee, N. W., Kim, C. S., Do, J. H., Jung, I. C., Lee, H. W and Yi, D. H. (1998) Isolation and identification of Bacillus sp. LAM97-44 producing antifungal antibiotics. Agric. Chem. Biotechnol. 41, 208-212
6 Besson, F. and Michel, G. (1990) Mycosubtilins B and C: minor antibiotics from mycosubtilin-producer Bacillus subtilis. Microbios. 62, 93-99
7 Lee, E. T. and Kim, S. D. (2001) Antifungal substance, 2,4diacetylphliroglucinol, produced from antagonistic bacterium Psuedomonas fluorescens 2112 against Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 29, 37-42
8 Ziegelbauer, K, Babczinski, P. and Schonfeld, W. (1998) Molecular mode of action of the antifungal beta . amino acid BAY 10-8888. Antimicrob. Agents Chemother. 42, 2197-2205
9 Fostel, J. M. and Lartey, P. A. (2000) Emerging novel antifungal agents, Therapeutic Focus 5, 25-32
10 Carmichael, J., DeGraff, W G., Grzdar, A. F., Monna, J. D. and Mitchell, K. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay, assesment of chemosensitivity test. Cancer Res. 47, 936-942
11 Lartey, P. A. and Moehle, C. M. (1997) In Recent advances in antifungal agents. Annual Reports in Medicinal Chemistry, Plattner, J. J. (ed.), Academic Press, pp. 151-160
12 Konishi, M., Nishio, M., Saitoh, K, Miyaki, T., Oki, T. and Kawaguchi, H. (1989) Cispentacin, a new antifungal antibiotic: Production, isolation, physico-chemical properties and structure. J. Antibiotics 42, 1749-1755   DOI
13 Tenoux, I., Besson, F. and Michel, G. (1991) Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester. Microbios. 67, 187-193
14 Eshita, S. M., Roberto, N. H., Beale, J. M., Mamiya, B. M. and Workman, R. F. (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the cingeners. J. Antibiotics 48, 1240-1247   DOI
15 Peypoux, F., Pommier, M. T., Marion, D., Ptak, M., Das, B. C. and Michel, G. (1986) Revised structure of mycosubtilin, a peptidolipid antibiot from Bacillus subtilis. J. Antibiotics 39, 636-641   DOI
16 Yi, D. H. and Lee, N. W. (2000) Production conditions of Bacillus sp. LAM97-44 for a water-soluble antifungal antibiotic. J. Ind. Sci. Tech. 25, 215-229
17 Maget-Dana, R. and Peypoux, F. (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87, 151-174   DOI   PUBMED   ScienceOn
18 Fujiu, M., Sawairi, S., Shimada, H., Takaya, H., Aoki, Y., Okuda, T. and Yokose, K. (1994) Azoxybacilin, a novel antifungal agent produced by Bacillus cereus NR2991: Production, isolation and structure elucidation. J. Antibiotics 47, 833-835   DOI
19 Aoki, Y., Yamamoto, M., Hosseini-Mazinani, S. M., Koshikawa, N., Sugimoto, K and Arisawa, M. (1996) Antifungal ozocibacilin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob. Agents Chemother. 40, 127-132
20 Besson, F., Hourdou, M. L. and Michel, G. (1990) Studies on the biosynthesis of iturin, an antibiotic of Bacillus subtilis, and a lipopeptide containing beta-hydroxy fatty acids. Biochem. Biophys. Acta. 1032, 101-106