Browse > Article

Purification and Characterization of an Antifungal Antibiotic from Bacillus subtilis LAM 97-44  

Lee, No-Woon (Department of Microbiological Engineering, KonKuk University)
Kwon, Tae-Jong (Department of Microbiological Engineering, KonKuk University)
Yi, Dong-Heui (Department of Microbiological Engineering, KonKuk University)
Publication Information
Applied Biological Chemistry / v.46, no.2, 2003 , pp. 69-73 More about this Journal
Abstract
A novel antifungal antibiotic for azole-resistant Candida albicans was purified from the culture broth of Bacillus subtilis LAM 97-44 by butanol extraction, Diaion HP-20 and Dowex-50 adsorption chromatography, silica gel flash chromatography followed by HPLC and designated LAM-44A. LAM-44A was stable for 60 min at $100^{\circ}C$, and pH range from 2 to 10. MIC values were observed at $0.5-3.5\;{\mu}g/ml$ against various Candida albicans strains. The antibiotic showed no cytotoxicity for S180, MKN-45, P388, HeLa and 373 at the concentration of 1 mg/ml. LAM-f4A was colorless powder soluble in water, methanol, ethanol, butanol and negative to ninhydrin reaction. The antibiotic had maximum absorption at 273 nm in methanol, and melting point was $202^{\circ}C$. The molecular weight and formula were determined to be 282 and $C_{14}H_{34}O_5$ by $^1H-NMR,\;^{13}C-NMR$, IR spectrum and elemental analysis.
Keywords
Bacillus subtilis LAM 97-44; antifungal antibiotic; azole-resistant Candida albicans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Strohl, W. R. (1997) In Industrial antibiotics: Today and the future. Strohl, W. R. (ed.), Biotechnology of antibiotics (2nd ed.), Mercel Dekker, New York, pp. 3-47
2 Kim, Y. S. and Kim, S. D. (1994) Antifungal mechanism and properties of antibiotic substances produced by Bacillus subtilis YB-70 as a biological control agent. J. Microbiol. Biotechnol. 4,296-304
3 Capobianco, J. O., Zakula, D., Coen, M. L. and Goldman, R. C. (1993) Anti-Candida activity of cispentacin: The active transport by amino acid permeases and possible mechanisms of action. Biochem. Biophys. Res. Commun. 190, 1037-1044   DOI   ScienceOn
4 Jeong, Y. K, Shin, Y. J., Jung, M. J., Joo, W H. and Choi, J. S. (2002) Structural analysis of the antifungal antibiotic from Bacillus sp. YJ-63. Kor. J. Microbiol. Biotechnol. 30, 21-25
5 Ziegelbauer, K, Babczinski, P. and Schonfeld, W. (1998) Molecular mode of action of the antifungal beta . amino acid BAY 10-8888. Antimicrob. Agents Chemother. 42, 2197-2205
6 Lee, N. W., Kim, C. S., Do, J. H., Jung, I. C., Lee, H. W and Yi, D. H. (1998) Isolation and identification of Bacillus sp. LAM97-44 producing antifungal antibiotics. Agric. Chem. Biotechnol. 41, 208-212
7 Besson, F. and Michel, G. (1990) Mycosubtilins B and C: minor antibiotics from mycosubtilin-producer Bacillus subtilis. Microbios. 62, 93-99
8 Fostel, J. M. and Lartey, P. A. (2000) Emerging novel antifungal agents, Therapeutic Focus 5, 25-32
9 Lee, E. T. and Kim, S. D. (2001) Antifungal substance, 2,4diacetylphliroglucinol, produced from antagonistic bacterium Psuedomonas fluorescens 2112 against Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 29, 37-42
10 Carmichael, J., DeGraff, W G., Grzdar, A. F., Monna, J. D. and Mitchell, K. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay, assesment of chemosensitivity test. Cancer Res. 47, 936-942
11 Eshita, S. M., Roberto, N. H., Beale, J. M., Mamiya, B. M. and Workman, R. F. (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the cingeners. J. Antibiotics 48, 1240-1247   DOI
12 Peypoux, F., Pommier, M. T., Marion, D., Ptak, M., Das, B. C. and Michel, G. (1986) Revised structure of mycosubtilin, a peptidolipid antibiot from Bacillus subtilis. J. Antibiotics 39, 636-641   DOI
13 Yi, D. H. and Lee, N. W. (2000) Production conditions of Bacillus sp. LAM97-44 for a water-soluble antifungal antibiotic. J. Ind. Sci. Tech. 25, 215-229
14 Maget-Dana, R. and Peypoux, F. (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87, 151-174   DOI   PUBMED   ScienceOn
15 Lartey, P. A. and Moehle, C. M. (1997) In Recent advances in antifungal agents. Annual Reports in Medicinal Chemistry, Plattner, J. J. (ed.), Academic Press, pp. 151-160
16 Konishi, M., Nishio, M., Saitoh, K, Miyaki, T., Oki, T. and Kawaguchi, H. (1989) Cispentacin, a new antifungal antibiotic: Production, isolation, physico-chemical properties and structure. J. Antibiotics 42, 1749-1755   DOI
17 Tenoux, I., Besson, F. and Michel, G. (1991) Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester. Microbios. 67, 187-193
18 Fujiu, M., Sawairi, S., Shimada, H., Takaya, H., Aoki, Y., Okuda, T. and Yokose, K. (1994) Azoxybacilin, a novel antifungal agent produced by Bacillus cereus NR2991: Production, isolation and structure elucidation. J. Antibiotics 47, 833-835   DOI
19 Aoki, Y., Yamamoto, M., Hosseini-Mazinani, S. M., Koshikawa, N., Sugimoto, K and Arisawa, M. (1996) Antifungal ozocibacilin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob. Agents Chemother. 40, 127-132
20 Besson, F., Hourdou, M. L. and Michel, G. (1990) Studies on the biosynthesis of iturin, an antibiotic of Bacillus subtilis, and a lipopeptide containing beta-hydroxy fatty acids. Biochem. Biophys. Acta. 1032, 101-106