• 제목/요약/키워드: f-cvd

검색결과 98건 처리시간 0.031초

고밀도 플라즈마 화학 증착 장치를 이용한 $TiB_2$ 박막 제조 (Deposition Of $TiB_2$ Films by High Density Plasma Assisted Chemical Vapor Deposition)

  • 이승훈;남경희;홍승찬;이정중
    • 한국표면공학회지
    • /
    • 제38권2호
    • /
    • pp.60-64
    • /
    • 2005
  • The ICP-CVD (inductively coupled plasma chemical vapor deposition) process was applied to the deposition of $TiB_2$ films. For plasma generation, 13.56 MHz r.f. power was supplied to 2-turn Cu coil placed inside chamber. And the gas mixture of $TiCl_4,\;BCl_3,\;H_2$ and Ar was used for $TiB_2$ deposition. $TiB_2$ films with high hardness (<40 GPa) were obtained at extremely low deposition temperature $(250^{\circ}C)$, and the films hardness increased with ICP power and gas flow ratio of $TiCl_4/BCl_3$. The film structure was changed from (100) preferred orientation to random orientation with increasing RF power. It is supposed that the enhanced hardness of films was caused by a strong Ti-B chemical bonding of stoichiometric $TiB_2$ films and film densification induced by high density plasma.

A SDR/DDR 4Gb DRAM with $0.11\mu\textrm{m}$ DRAM Technology

  • Kim, Ki-Nam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.20-30
    • /
    • 2001
  • A 1.8V $650{\;}\textrm{mm}^2$ 4Gb DRAM having $0.10{\;}\mu\textrm{m}^2$ cell size has been successfully developed using 0.11 $\mu\textrm{m}$DRAM technology. Considering manufactur-ability, we have focused on developing patterning technology using KrF lithography that makes $0.11{\;}\mu\textrm{m}$ DRAM technology possible. Furthermore, we developed novel DRAM technologies, which will have strong influence on the future DRAM integration. These are novel oxide gap-filling, W-bit line with stud contact for borderless metal contact, line-type storage node self-aligned contact (SAC), mechanically stable metal-insulator-silicon (MIS) capacitor and CVD Al process for metal inter-connections. In addition, 80 nm array transistor and sub-80 nm memory cell contact are also developed for high functional yield as well as chip performance. Many issues which large sized chip often faces are solved by novel design approaches such as skew minimizing technique, gain control pre-sensing scheme and bit line calibration scheme.

  • PDF

Surface Characteristics of Direct Fluorinated Single-walled Carbon Nanotubes

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.2071-2076
    • /
    • 2009
  • The single-walled carbon nanotubes (SWCNTs) produced by chemical vapor deposition (CVD) were directly fluorinated with fluorine ($F_2$) gas in a temperature range 20 ~ 400 ${^{\circ}C}$. The surface properties and morphology of the SWCNTs were investigated in terms of fluorination temperature. As a result, Raman spectra showed a pair of bands at 1340 and 1590 $cm^{-1}$ peculiar to disordered $sp^2$-carbons. These results indicated that C-F bonds were formed on the rear surfaces of the nanotubes by fluorination, while the external surfaces as well as the layers between the internal and external surfaces retained their $sp^2$-hybridization. XPS analysis exhibited that fluorine atoms were bonded to carbon atoms on internal surfaces (rear surfaces) of the nanotubes and the amount of fluorine attached on the nanotubes was increased with increasing the fluorination temperature. Consequently, the direct fluorination of carbon nanotubes led to functionalization and modification of pristine nanotubes with respect to surface and morphological properties.

TiN박막의 증착특성에 미치는 플라즈마 화학증착변수들의 영향 (Effects of Deposition Variables on Plasma-Assisted CVD of TiN Films)

  • 이정래;김광호;신동원;박찬경
    • 한국세라믹학회지
    • /
    • 제31권10호
    • /
    • pp.1188-1196
    • /
    • 1994
  • TiN films were deposited onto high speed steel(SKH9) and silicon wafer by plasma-assisted chemical vapor deposition(PACVD) using a TiCl4/N2/H2/Ar gas mixture. The effects of deposition temperature, R.F. power, and H2 concentration on the deposition of TiN were studied. The residual chlorine content and the microhardness of TiN films were also investigated. It was found that TiN films grew with a columnar structure of a strong (200) preferred orientation regardless of the substrate type and the deposition variables. The TiN films consisted of columnar-grains of about 50 to 100 nm in diameter. The columnar grains themselves contained much finer fibrous grains. As deposition temperature increased, the residual chlorine content decreased sharply. R. F. powder enhanced the deposition rate largely. Increasing of H2 concentration had little effect on the residual chlorine.

  • PDF

플라즈마 화학증착에 의한 강재위에 TiN의 저온증착 (Low Temperature Deposition of TiN on the Steel Substrate by Plasma-Assisted CVD)

  • 이정래;김광호;조성재
    • 한국세라믹학회지
    • /
    • 제30권2호
    • /
    • pp.148-156
    • /
    • 1993
  • TiN films were deposited onto high speed steel (SKH9) by plasma assisted chemical vapor deposition (PACVD) using a TiCl4/N2/H2/Ar gas mixture at around 50$0^{\circ}C$. The effects of the deposition temperature, R.F. power and TiCl4 concentration on the deposition of TiN and the microhardness of TiN film were investigated. The crystallinity and the microhardness of TiN films were improved with increase of the deposition temperature. Optimum deposition temperature in this study was 50$0^{\circ}C$, because a softening or phase transformation of the substrate occurred over 50$0^{\circ}C$. A large increase of the film growth rate with a strong(200) preferred orientation was obtained by increasing R.F. power. Much chlorine content of about 10at.% was found in the deposited films and resulted in relatively low average microhardness of about 1, 500Kgf/$\textrm{mm}^2$ compared with the theoretical value(~2, 000Kgf/$\textrm{mm}^2$).

  • PDF

Characterization of patterned biochip fabricated by using photolithographic method of plasma polymerized polyethylene glycol

  • 최창록;최건오;정동근;문대원;이태걸
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.399-399
    • /
    • 2010
  • Polyethylene glycol(PEG)은 강력한 단백질 및 세포흡착 억제력을 가지고 있어 다양한 생물학적 연구에 사용되고 있으나, 기판과의 결합력이 무척 약해 기판 위에 박막을 형성하기가 매우 어렵다는 문제점이 있다. 이번 연구에서는 capacitively-coupled plasma chemical vapor deposition(CCP-CVD)를 이용하여 PEG를 유리 기판 위에 플라즈마 중합하여 plasma-polymerized PEG(PP-PEG) 기판을 만들었다. PP-PEG 박막은 FT-IR, XPS, ToF-SIMS 분석을 통하여 PEG와 매우 유사한 화학적 조성을 가지고 있음을 확인할 수 있었다. 또한 PP-PEG 기판은 photolithography 방법을 이용하여 표면에 photoresist를 패턴한 뒤 아민작용기를 가지는 plasma-polymerized ethylenediamine (PPEDA)를 증착하여 표면이 amine/PEG로 패턴화된 박막 기판을 만들었다. 패턴된 기판에 단백질 및 세포를 고정화하였을 때, 아민 작용기가 노출된 부분에만 고정화가 나타나고 PP-PEG 영역에는 단백질 및 세포의 흡착이 효율적으로 억제되는 것을 형광측정 및 ToF-SIMS chemical imaging 방법을 이용하여 확인하였다. 이러한 바이오칩 제작기술은 단백질 및 세포 칩을 포함한 여러 분야에서 폭넓게 응용될 수 있을 것으로 기대된다.

  • PDF

PECVD법에 의한 3C-SiC막 증착(I): 증착변수에 따른 SiC 증착거동 (Deposition of 3C-SiC Films by Plasma-enhanced Chemical Vapor Deposition (I): Deposition Behaviors of SiC with Deposition Parameters)

  • 김광호;서지윤;윤석영
    • 한국세라믹학회지
    • /
    • 제38권6호
    • /
    • pp.531-536
    • /
    • 2001
  • SiCl$_4$/CH$_4$/H$_2$계를 사용한 플라즈마 화학증착법(PECVD)으로 실리콘(100) 기판 위에 3C-SiC막을 117$0^{\circ}C$~1335$^{\circ}C$의 온도범위에서 증착하였다. 증착온도, 유입가스비, R$_{x}$ [=CH$_4$/(CH$_4$+H$_2$)], 그리고 r.f. power를 변화시켜 증착막의 결정성에 대해 검토하였다. Thermal CVD에 비해 PECVD법은 박막의 증착속도를 향상시켰다. 증착된 3C-SiC은 (111) 면으로 최대의 우선배향성을 지님을 알 수 있었다. 실리콘 기판 위의 3C-SiC막의 결정성은 R$_{x}$값에 의존하였으며, R$_{x}$가 감소할수록 결정성이 더욱 향상되었다. Free Si가 3C-SiC막과 함께 증착되었으나, 증착온도와 r.f power가 증가함에 따라 free Si의 함량은 감소하였다. 증착온도 127$0^{\circ}C$, 유입가스비 R$_{x}$=0.04, r.f. power가 60W에서 비교적 결정성을 가진 3C-SiC막을 얻을 수 있었다.

  • PDF

O2/FTES-ICPCVD 방법에 의한 Fluorocarbonated-$SiO_2$ 박막형성

  • 오경숙;강민성;최치규;이광만;김건호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.105-105
    • /
    • 1999
  • 차세대 기억소자에서는 집접도의 증가, 고속화, 그리고 미세화에 따라 배선간으 최소선폭이 작아지고, 새로운 다층 배선기술이 요구되는 가운데 층간절연막의 재료와 형성기술은 소자의 특성을 향상시켜주는 중요한 요소로서 열적안정성, 저유전율, 평탄화특성 등에 핵심을 두고 연구되고 있다. 본 연구에서는 5인치 p-Si(100) 위에 FTES와 O2를 precursor로 하고 carrier gas를 Ar gas하여 ICP CVD 방법으로 저유전율의 Fluorocarbonated-SiO2 박막을 형성하였다. 0.1-1kW, 13.56MHz인 rf power를 사용하였으며, 증착은 RT에서 5~10분으로 하였다. 형성된 박막은 FTIR(fourier transform infrared), XPS(x-ray photoelectron spectroscopy), 그리고 ellipsopsometer 등을 이용하여 결합모드와 F농도, 균일도 등을 측정하고, I-V와 C-V 측정장치, 그리고 SERM(scanning electrion microscopy) 등을 이용하여 유전상수, 누설전류, dielectric breakdown voltage, 그리고 박막의 stepcoverage를 측정하였다. 제작된 박막의 신뢰성은 열처리에 따른 전기적 특성으로부터 조사하였다. 형성된 fluorocarbonated 박막 결합모드는 Si-F, Si-O, O-C, C-C와 C-F였고 O2:FTES:Ar 유량을 1sccm:10sccm:6sccm으로 하여 증착한 시료에서 유전율은 2.8이었으며, 누설전류밀도는 8$\times$10-9A/cm2, Breakdown voltage는 10MV/cm 이상, 그리고 stepcoverage는 91%로 측정되었다.

  • PDF

Effect of Improved Surface Wetability and Adhesion of Undulated Diamond-like Carbon Structure with r.f. PE-CVD

  • Jang, Young-Jun;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.22-25
    • /
    • 2008
  • This paper investigated the wetting and adhesion property of undulated DLC film with surface morphology controlled for a reduced real area of contact. The undulated DLC Films were prepared by 13.56 MHZ radio frequency plasma enhanced chemical vapor deposition (r.f. PECVD) by using nanoscale Cu dots surface on a Si (100) substrate. FE-SEM, AFM analysis showed that the after repeated deposition and plasma induced damage with Ar ions, the surface was nanoscale undulated. This phenomenon changed the surface morphology of DLC surface. Raman spectra of film with changed morphology revealed that the plasma induced damage with Ar ions significantly suppressed the graphitization of DLC structure. Also, it was observed that while the untreated flat DLC surfaces had wetting angle starting ranged from $72^{\circ}$ and adhesion force of 333ni. Had wetting angle the undulated DLC surfaces, which resemble the surface morphology of a cylindrical shape, increased up to $104^{\circ}$ and adhesion force decreased down to 11 nN. The measurements agree with Hertz and JKR models. The surface undulation was affected mainly by several factors: the surface morphology affinity to cylindrical shape, reduction of the real area of contact and air pockets trapped in cylindrical asperities of the surface.

박막 고체전지 개발에 관한 연구 (A study on the development of thin solid state batteries)

  • 권혁상;이홍로
    • 한국표면공학회지
    • /
    • 제25권5호
    • /
    • pp.215-221
    • /
    • 1992
  • This research is aimed at developing(110) preferred TiS2 cathode films and glass typed solid electro-lytes which have high ionic migrations and low electron conductivities for thin secondary solid batteries. To obtain preferred oriented TiS2 thin films on a substrate by CVD method using TiCl4 and H2S gases three factors of heating temperature, inner pressure of furnace and TiCl4/H2S gas mole fraction were ex-amined systematically. To obtain solid films of Li2O-B2O3-SiO2 electrolytes by r.f. sputtering for thin proto-type batteries of Li/Li2O-B2O3-SiO2TiS2, sputtering conditions were examined. TiS2 cathode films showed columnar structure, namely c axis oriented parallely. At low pressure of reaction chamber and low heating temperature, surface of smooth TiS2 films couldd be obtained. Ionic conductivity of Li2O-B2O3-SiO2 films manufactured by r.f. magnetron sputtering were 3$\times$10-7$\Omega$-1cm-1 and electron conductivities were 10-11$\Omega$-1cm-1. Open cell voltage of thin lithium batteries were 2.32V with a designed prototype cell.

  • PDF