Deposition Of $TiB_2$ Films by High Density Plasma Assisted Chemical Vapor Deposition

고밀도 플라즈마 화학 증착 장치를 이용한 $TiB_2$ 박막 제조

  • Lee S. H. (Plasma Surface Engineering Lab., School of Materials Science and Engineering, Seoul National University) ;
  • Nam K. H. (Plasma Surface Engineering Lab., School of Materials Science and Engineering, Seoul National University) ;
  • Hong S. C. (LG Production Engineering Research Center, LG Electronics) ;
  • Lee J. J. (Plasma Surface Engineering Lab., School of Materials Science and Engineering, Seoul National University)
  • 이승훈 (서울대학교 공과대학 재료공학부 플라즈마 표면공학 연구실) ;
  • 남경희 (서울대학교 공과대학 재료공학부 플라즈마 표면공학 연구실) ;
  • 홍승찬 (엘지전자 생산기술원) ;
  • 이정중 (서울대학교 공과대학 재료공학부 플라즈마 표면공학 연구실)
  • Published : 2005.04.01

Abstract

The ICP-CVD (inductively coupled plasma chemical vapor deposition) process was applied to the deposition of $TiB_2$ films. For plasma generation, 13.56 MHz r.f. power was supplied to 2-turn Cu coil placed inside chamber. And the gas mixture of $TiCl_4,\;BCl_3,\;H_2$ and Ar was used for $TiB_2$ deposition. $TiB_2$ films with high hardness (<40 GPa) were obtained at extremely low deposition temperature $(250^{\circ}C)$, and the films hardness increased with ICP power and gas flow ratio of $TiCl_4/BCl_3$. The film structure was changed from (100) preferred orientation to random orientation with increasing RF power. It is supposed that the enhanced hardness of films was caused by a strong Ti-B chemical bonding of stoichiometric $TiB_2$ films and film densification induced by high density plasma.

Keywords

References

  1. C. Pfohl, A. Bulak, K. T. Rie, Surface and Coatings Technology, 131 (2000) 141 https://doi.org/10.1016/S0257-8972(00)00752-0
  2. B. Prakash, C. Ftikos, J. P. Celis, Surface and Coatings Technology, 154 (2002) 182 https://doi.org/10.1016/S0257-8972(02)00035-X
  3. C. S. Choi, G. C. Xing, G. A. Ruggles, C. M. Osburn, Journal of Applied Physics, 69(11) (1991) 7853 https://doi.org/10.1063/1.347518
  4. D. K Sood, S. Mukherjee, G. Kastselis, I. G. Brown, K. E. Prince, K. T. Short, P. J. Evans, Surface and Coatings Technology, 103-104 (1998) 304-311 https://doi.org/10.1016/S0257-8972(98)00428-9
  5. H. O. Pierson, A. W. Mullendore, Thin Solid Films, 72 (1980) 511 https://doi.org/10.1016/0040-6090(80)90540-4
  6. D. H. Kang, D. K. Lee, K. B. Kim, J.-J. Lee, J. Joo, Applied Physics Letters, 84 (2004) 3283 https://doi.org/10.1063/1.1715140
  7. E. Randich, T. M. Gerlach, Thin Solid Films, 75 (1981) 271 https://doi.org/10.1016/0040-6090(81)90406-5
  8. L. M. Williams, Applied Physics Letters, 46(1) (1985) 43 https://doi.org/10.1063/1.95845
  9. H. Karner, J. Laimer, H. Stri, P. Rdhammer, Surface and Coatings Technology, 39/40 (1989) 293 https://doi.org/10.1016/0257-8972(89)90063-7
  10. C. Pfohl, K-T. Rie, Surface and Coatings Technology, 142-144 (2001) 1116-1120 https://doi.org/10.1016/S0257-8972(01)01224-5
  11. M. J. Son, S. S. Kang, E. A. Lee, K. H. Kim, Journal of Materials Processing Technology, 130-131 (2002) 266-271 https://doi.org/10.1016/S0924-0136(02)00748-3
  12. R. Kullmer, C. Lugmair, A. Figueras, J. Bassas, M. Stoiber, C. Mitterer, Surface and Coatings Technology, 174-175 (2003) 1229-1233 https://doi.org/10.1016/S0257-8972(03)00532-2
  13. J. W. Lim, J.-J. Lee, H. Ahn, K.-T. Rie, Surface and Coatings Technology, 174-175 (2003) 720-724 https://doi.org/10.1016/S0257-8972(03)00574-7