• 제목/요약/키워드: extreme wind speed

검색결과 134건 처리시간 0.024초

A Continuous Wavelet Study on Approach Wind and Building Pressure (접근풍속과 건물 변동풍압력에 대한 연속파동변화법의 적용)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • 제25권B호
    • /
    • pp.89-97
    • /
    • 2005
  • Application of proper orthogonal decomposition (POD) and continuous wavelet transform (CWT) is introduced to study wind speed and building roof pressures of flow separation region. In this study, a detailed analysis of the approach wind flow, wind-induced building pressure and the relation between the two fields was carried out using the POD technique and CWT analysis. The results show potential of the application of POD and CWT in characterization of spatio-temporal and spectral properties of the approach wind and its induced dynamic pressure events. Some of findings resulting from the application of this analysis can be summarized as follows: (1) The POD first principal coordinate of the roof pressure in the separated shear layer is closely correlated with the longitudinal component of oncoming flow. (2) The CWT analysis suggests that the extreme peak pressure in the separated shear layer is due to condensed large-scale eddy motions.

  • PDF

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

Advances in the design of high-rise structures by the wind tunnel procedure: Conceptual framework

  • Simiu, Emil;Yeo, DongHun
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.489-503
    • /
    • 2015
  • This paper surveys and complements contributions by the National Institute of Standards and Technology to techniques ensuring that the wind tunnel procedure for the design of high-rise structures is based on sound methods and allows unambiguous inter-laboratory comparisons. Developments that enabled substantial advances in these techniques include: Instrumentation for simultaneously measuring pressures at multiple taps; time-domain analysis methods for estimating directional dynamic effects; creation of large simulated extreme directional wind speed data sets; non-parametric methods for estimating mean recurrence intervals (MRIs) of Demand-to-Capacity Indexes (DCIs); and member sizing based on peak DCIs with specified MRIs. To implement these advances changes are needed in the traditional division of tasks between wind and structural engineers. Wind engineers should provide large sets of directional wind speeds, pressure coefficient time series, and estimates of uncertainties in wind speeds and pressure coefficients. Structural engineers should perform the dynamic analyses, estimates of MRIs of wind effects, sensitivity studies, and iterative sizing of structural members. The procedure is transparent, eliminates guesswork inherent in frequency domain methods and due to the lack of pressure measurements, and enables structural engineers to be in full control of the structural design for wind.

Wind load parameters and performance of an integral steel platform scaffold system

  • Zhenyu Yang;Qiang Xie;Yue Li;Chang He
    • Wind and Structures
    • /
    • 제36권4호
    • /
    • pp.263-275
    • /
    • 2023
  • As a new kind of construction facility for high rise buildings, the integral steel platform scaffold system (ISPS) consisting of the steel skeleton and suspended scaffold faces high wind during the construction procedure. The lattice structure type and existence of core tubes both make it difficult to estimate the wind load and calculate the wind-induced responses. In this study, an aeroelastic model with a geometry scale ratio of 1:25 based on the ISPS for Shanghai Tower, with the representative square profile, is manufactured and then tested in a wind tunnel. The first mode of the prototype ISPS is a torsional one with a frequency of only 0.68 Hz, and the model survives under extreme wind speed up to 50 m/s. The static wind load and wind vibration factors are derived based on the test result and supplementary finite element analysis, offering a reference for the following ISPS design. The spacer at the bottom of the suspended scaffold is suggested to be long enough to touch the core tube in the initial status to prevent the collision. Besides, aerodynamic wind loads and cross-wind loads are suggested to be included in the structural design of the ISPS.

Tornado-Induced Extreme Waves in an Offshore Basin Revisited (토네이도가 유발한 막대한 파에 대한 재고)

  • Yong Kwon Chung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제10권3호
    • /
    • pp.120-124
    • /
    • 1998
  • The present study was initiated to protect floating nuclear power plants from the tornado. The solution shows that a tonado induces extreme waves of 27 ft (8.2 m) in height if it crosses the basin with a speed close to the critical speed. Waves generated by wind stress are ignored.

  • PDF

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

A case study of gust factor characteristics for typhoon Morakat observed by distributed sites

  • Liu, Zihang;Fang, Genshen;Zhao, Lin;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.21-34
    • /
    • 2022
  • Gust factor is an important parameter for the conversion between peak gust wind and mean wind speed used for the structural design and wind-related hazard mitigation. The gust factor of typhoon wind is observed to show a significant dispersion and some differences with large-scale weather systems, e.g., monsoons and extratropical cyclones. In this study, insitu measurement data captured by 13 meteorological towers during a strong typhoon Morakot are collected to investigate the statistical characteristics, height and wind speed dependency of the gust factor. Onshore off-sea and off-land winds are comparatively studied, respectively to characterize the underlying terrain effects on the gust factor. The theoretical method of peak factor based on Gaussian assumption is then introduced to compare the gust factor profiles observed in this study and given in some building codes and standards. The results show that the probability distributions of gust factor for both off-sea winds and off-land winds can be well described using the generalized extreme value (GEV) distribution model. Compared with the off-land winds, the off-sea gust factors are relatively smaller, and the probability distribution is more leptokurtic with longer tails. With the increase of height, especially for off-sea winds, the probability distributions of gust factor are more peaked and right-tailed. The scatters of gust factor decrease with the mean wind speed and height. AS/NZ's suggestions are nearly parallel with the measured gust factor profiles below 80m, while the fitting curve of off-sea data below 120m is more similar to AIJ, ASCE and EU.

Modeling wind load paths and sharing in a wood-frame building

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.177-194
    • /
    • 2019
  • While establishing adequate load paths in the light-frame wood structures is critical to maintain the overall structural integrity and avoid significant damage under extreme wind events, the understanding of the load paths is limited by the high redundant nature of this building type. The objective of the current study is to evaluate the system effects and investigate the load paths in the wood structures especially the older buildings for a better performance assessment of the existing building stock under high winds, which will provide guidance for building constructions in the future. This is done by developing building models with configurations that are suspicious to induce failure per post damage reconnaissance. The effect of each configuration to the structural integrity is evaluated by the first failure wind speed, amajor indicator beyond the linear to the nonlinear range. A 3D finite-element (FE) building model is adopted as a control case that is modeled using a validated methodology in a highly-detailed fashion where the nonlinearity of connections is explicitly simulated. This model is then altered systematically to analyze the effects of configuration variations in the model such as the gable end sheathing continuity and the gable end truss stiffness, etc. The resolution of the wind loads from scaled wind tunnel tests is also discussed by comparing the effects to wind loads derived from large-scale wind tests.

Modeling of steady motion and vertical-plane dynamics of a tunnel hull

  • Chaney, Christopher S.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.323-332
    • /
    • 2014
  • High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.