• Title/Summary/Keyword: extreme value prediction

Search Result 59, Processing Time 0.02 seconds

An improved method for predicting recurrence period wind speed considering wind direction

  • Weihu Chen;Yuji Tian;Yingjie Zhang
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.85-100
    • /
    • 2024
  • In light of extreme value distribution probability, an improved prediction method of the Recurrence Period Wind Speed (RPWS) is constructed considering wind direction, with the Equivalent Independent Wind Direction Number (EIWDN) introduced as a parameter variable. Firstly, taking the RPWS prediction of Beijing city as an example, the traditional Cook method is used to predict the RPWS of each wind direction based on the measured wind speed data in Beijing area. On basis of the results, the empirical formulae to determine the parameter variables are fitted to construct an improved expression of the non-exceedance probability of the RPWS. In this process, the statistical model of the optimal threshold is established, and thus the independent wind speed samples exceeding the threshold are extracted and fitted to follow the Generalized Pareto Distribution (GPD) model for analysis. In addition, the Extreme Value Type I (EVT I) distribution model is used to predict and analyze the RPWS. To verify its wide applicability, the improved method is further used in cities like Jinan, Nanjing, Wuxi, Shanghai and Shenzhen to predict and analyze the RPWS of each wind direction, and the prediction results are compared against those gained via the traditional Cook method and the whole direction. Results show that the 50-year RPWS results predicted by the improved method are basically consistent with those predicted by the traditional method, and the RPWS prediction values of most wind directions are within the envelope range of the whole wind direction prediction value. Compared with the traditional method, the improved method can readily predict the RPWS under different return periods through empirical formulae, and avoid the repeated operation process and some assumptions in the traditional Cook method, and then improve the efficiency of prediction. In addition, the improved RPWS prediction results corresponding to the GPD model are slightly larger than those of the EVT I distribution model.

Prediction of recent earthquake magnitudes of Gyeongju and Pohang using historical earthquake data of the Chosun Dynasty (조선시대 역사지진자료를 이용한 경주와 포항의 최근 지진규모 예측)

  • Kim, Jun Cheol;Kwon, Sookhee;Jang, Dae-Heung;Rhee, Kun Woo;Kim, Young-Seog;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.119-129
    • /
    • 2022
  • In this paper, we predict the earthquake magnitudes which were recently occurred in Gyeongju and Pohang, using statistical methods based on historical data. For this purpose, we use the five-year block maximum data of 1392~1771 period, which has a relatively high annual density, among the historical earthquake magnitude data of the Chosun Dynasty. Then, we present the prediction and analysis of earthquake magnitudes for the return level over return period in the Chosun Dynasty using the extreme value theory based on the distribution of generalized extreme values (GEV). We use maximum likelihood estimation (MLE) and L-moments estimation for parameters of GEV distribution. In particular, this study also demonstrates via the goodness-of-fit tests that the GEV distribution can be an appropriate analytical model for these historical earthquake magnitude data.

Non-Gaussian analysis methods for planing craft motion

  • Somayajula, Abhilash;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.293-308
    • /
    • 2014
  • Unlike the traditional displacement type vessels, the high speed planing crafts are supported by the lift forces which are highly non-linear. This non-linear phenomenon causes their motions in an irregular seaway to be non-Gaussian. In general, it may not be possible to express the probability distribution of such processes by an analytical formula. Also the process might not be stationary or ergodic in which case the statistical behavior of the motion to be constantly changing with time. Therefore the extreme values of such a process can no longer be calculated using the analytical formulae applicable to Gaussian processes. Since closed form analytical solutions do not exist, recourse is taken to fitting a distribution to the data and estimating the statistical properties of the process from this fitted probability distribution. The peaks over threshold analysis and fitting of the Generalized Pareto Distribution are explored in this paper as an alternative to Weibull, Generalized Gamma and Rayleigh distributions in predicting the short term extreme value of a random process.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

Comparison of log-logistic and generalized extreme value distributions for predicted return level of earthquake (지진 재현수준 예측에 대한 로그-로지스틱 분포와 일반화 극단값 분포의 비교)

  • Ko, Nak Gyeong;Ha, Il Do;Jang, Dae Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.107-114
    • /
    • 2020
  • Extreme value distributions have often been used for the analysis (e.g., prediction of return level) of data which are observed from natural disaster. By the extreme value theory, the block maxima asymptotically follow the generalized extreme value distribution as sample size increases; however, this may not hold in a small sample case. For solving this problem, this paper proposes the use of a log-logistic (LLG) distribution whose validity is evaluated through goodness-of-fit test and model selection. The proposed method is illustrated with data from annual maximum earthquake magnitudes of China. Here, we present the predicted return level and confidence interval according to each return period using LLG distribution.

Statistical Modeling for Forecasting Maximum Electricity Demand in Korea (한국 최대 전력량 예측을 위한 통계모형)

  • Yoon, Sang-Hoo;Lee, Young-Saeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • It is necessary to forecast the amount of the maximum electricity demand for stabilizing the flow of electricity. The time series data was collected from the Korea Energy Research between January 2000 and December 2006. The data showed that they had a strong linear trend and seasonal change. Winters seasonal model, ARMA model were used to examine it. Root mean squared prediction error and mean absolute percentage prediction error were a criteria to select the best model. In addition, a nonstationary generalized extreme value distribution with explanatory variables was fitted to forecast the maximum electricity.

Prediction of Return Periods of Sewer Flooding Due to Climate Change in Major Cities (기후변화에 따른 주요 도시의 하수도 침수 재현기간 예측)

  • Park, Kyoohong;Yu, Soonyu;Byambadorj, Elbegjargal
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using generalized extreme value (GEV) distribution and Gumbel distribution models with rainfall data collected in major cities of Korea to reevaluate the return period of sewer flooding in those cities. As a result, the probable rainfall for GEV and Gumbel distribution in non-stationary state both increased with time(t), compared to the stationary probable rainfall. Considering the reliability of ${\xi}_1$, a variable reflecting the increase of storm events due to climate change, the reliability of the rainfall duration for Seoul, Daegu, and Gwangju in the GEV distribution was over 90%, indicating that the probability of rainfall increase was high. As for the Gumbel distribution, Wonju, Daegu, and Gwangju showed the higher reliability while Daejeon showed the lower reliability than the other cities. In addition, application of the maximum annual rainfall change rate (${\xi}_1{\cdot}t$) to the location parameter made possible the prediction of return period by time, therefore leading to the evaluation of design recurrence interval.

A Prediction of Turbulent Characteristics in a Complex Terrain by Linear Theory (선형이론에 의한 복잡지형 내 난류 특성의 예측)

  • Yoon, J.E.;Kyong, N.H.;Kim, S.W.
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • The external conditions for estimating dynamic wind loads of wind turbines, such as the turbulence, the extreme wind, the mean velocity gradients and the flow angles, are simulated over GangWon Wind Energy Test Field placed in one of the most complex terrain in Korea. Reference meteorological data has been gathered at a height of 30m from 2003 to 2004 with a ultrasonic anemometer. The absolute value of the spectral energy are simulated and the verification of this prediction has been carried out with comparing to the experimental data. The most desirable place for constructing new wind turbine are resulted as Point 2 and Point 3 due to the lower value of Turbulence Intensity and the higher value of wind resource relatively.

Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment (정량적 위험성평가를 위한 배출 오염물질 분포 예측)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.

The relationship between prediction accuracy and pre-information in collaborative filtering system

  • Kim, Sun-Ok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.803-811
    • /
    • 2010
  • This study analyzes the characteristics of preference ratings by dividing estimated values into four groups according to rank correlation coefficient after obtaining preference estimated value to user's ratings by using collaborative filtering algorithm. It is known that the value of standard error of skewness and standard error of kurtosis lower in the group of higher rank correlation coefficient This explains that the preference of higher rank correlation coefficient has lower extreme values and the differences of preference rating values. In addition, top n recommendation lists are made after obtaining rank fitting by using the result ranks of prediction value and the ranks of real rated values, and this top n is applied to the four groups. The value of top n recommendation is calculated higher in the group of higher rank correlation coefficient, and the recommendation accuracy in the group of higher rank correlation coefficient is higher than that in the group of lower rank correlation coefficient Thus, when using standard error of skewness and standard error of kurtosis in recommender system, rank correlation coefficient can be higher, and so the accuracy of recommendation prediction can be increased.