DOI QR코드

DOI QR Code

An improved method for predicting recurrence period wind speed considering wind direction

  • Weihu Chen (School of Civil Engineering, Beijing Jiaotong University) ;
  • Yuji Tian (School of Civil Engineering, Beijing Jiaotong University) ;
  • Yingjie Zhang (BCEG No.3 Construction Engineering Ltd.)
  • Received : 2023.12.05
  • Accepted : 2024.04.29
  • Published : 2024.08.25

Abstract

In light of extreme value distribution probability, an improved prediction method of the Recurrence Period Wind Speed (RPWS) is constructed considering wind direction, with the Equivalent Independent Wind Direction Number (EIWDN) introduced as a parameter variable. Firstly, taking the RPWS prediction of Beijing city as an example, the traditional Cook method is used to predict the RPWS of each wind direction based on the measured wind speed data in Beijing area. On basis of the results, the empirical formulae to determine the parameter variables are fitted to construct an improved expression of the non-exceedance probability of the RPWS. In this process, the statistical model of the optimal threshold is established, and thus the independent wind speed samples exceeding the threshold are extracted and fitted to follow the Generalized Pareto Distribution (GPD) model for analysis. In addition, the Extreme Value Type I (EVT I) distribution model is used to predict and analyze the RPWS. To verify its wide applicability, the improved method is further used in cities like Jinan, Nanjing, Wuxi, Shanghai and Shenzhen to predict and analyze the RPWS of each wind direction, and the prediction results are compared against those gained via the traditional Cook method and the whole direction. Results show that the 50-year RPWS results predicted by the improved method are basically consistent with those predicted by the traditional method, and the RPWS prediction values of most wind directions are within the envelope range of the whole wind direction prediction value. Compared with the traditional method, the improved method can readily predict the RPWS under different return periods through empirical formulae, and avoid the repeated operation process and some assumptions in the traditional Cook method, and then improve the efficiency of prediction. In addition, the improved RPWS prediction results corresponding to the GPD model are slightly larger than those of the EVT I distribution model.

Keywords

Acknowledgement

The financial support from the National Natural Science Foundation of China (No. 51878040 and No. 51720105005) are gratefully acknowledged.

References

  1. Aboshosha, H., Mara, T.G. and Izukawa, N. (2020), "Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations", Wind Struct., 31(2), 085. https://doi.org/10.12989/was.2020.31.2.085.
  2. An, Y. and Pandey, M.D. (2005), "A comparison of methods of extreme wind speed estimation", J. Wind Eng. Ind. Aerod., 93(7), 535-545. https://doi.org/10.1016/j.jweia.2005.05.003.
  3. Cook, N.J. (1986a), Designers Guide to Wind Loading of Building Structures. Part 1: Background, Damage Survey, Wind Data and Structural Classification, London, Building Research Establishment Report, 99-116.
  4. Cook, N.J. (1982), "Towards better estimation of extreme winds", J. Wind Eng. Ind. Aerod., 9(3), 295-323. https://doi.org/10.1016/0167-6105(82)90021-6.
  5. Cook, N.J. (1983), "Note on directional and seasonal assessment of extreme winds for design", J. Wind Eng. Ind. Aerod., 12(3), 365-372. https://doi.org/10.1016/0167-6105(83)90057-0.
  6. Cook, N.J. and Miller, C.A. (1999), "Further note on directional assessment of extreme winds for design", J. Wind Eng. Ind. Aerod., 79(3), 201-208. https://doi.org/10.1016/S0167-6105(98)00109-3.
  7. Xie, J. and Yang, X. (2019), "Exploratory study on wind-adaptable design for super-tall buildings", Wind Struct., 29(6), 489-497. https://doi.org/10.12989/was.2019.29.6.489.
  8. ESDU (Engineering Science Data Unit). (2012), World-Wide Extreme Wind Speeds: Part 1: Origins and Methods of Analysis, IHS(Information Handling Service), London, UK.
  9. Gu, J., Sheng, C. and Hong, H. (2020), "Comparison of tropical cyclone wind field models and their influence on estimated wind hazard", Wind Struct., 31(4), 321-334. https://doi.org/10.12989/was.2020.31.4.321.
  10. Harris, R.I. (1999), "Improvements to the "Method of Independent Storms"", J. Wind Eng. Ind. Aerod., 80(1), 1-30. https://doi.org/10.1016/S0167-6105(98)00123-8.
  11. Huang, M., Li, Q., Xu, H., Lou, W. and Lin, N. (2018), "Non-stationary statistical modeling of extreme wind speed series with exposure correction", Wind Struct., 26(3), 129-146. https://doi.org/10.12989/was.2018.26.3.129.
  12. Hui, Y., Yang, Q. and Li, Z. (2014), "An alternative method for estimation of annual extreme wind speeds", Wind Struct., 19(2), 169-184. https://doi.org/10.12989/was.2014.19.2.169.
  13. He, Y., Li, Q., Chan, P., Zhang, L., Yang, H. and Li, L. (2020), "Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon", Wind Struct., 30(6), 575-595. https://doi.org/10.12989/was.2020.30.6.375.
  14. Huang, S., Li, Q., Shu, Z. and Chan, P.W. (2024), "Copula-based estimation of directional extreme wind speeds: Application for wind-resistant structural design", Structures., 60, 105845. https://doi.org/10.1016/j.istruc.2023.105845.
  15. Itoi, T. and Kanda, J. (2002), "Comparison of correlated Gumbel probability models for directional maximum wind speeds", J. Wind Eng. Ind. Aerod., 90(12-15), 1631-1644. https://doi.org/10.1016/S0167-6105(02)00275-1.
  16. Ji X., Zou J., Cheng Z., Huang G. and Zhao Y.G. (2024), "Generalized bivariate mixture model of directional wind speed in mixed wind climates", Alexandria Eng. J., 89, 98-109. https://doi.org/10.1016/j.aej.2024.01.008.
  17. Kruger, A.C., Goliger, A.M., Retief, J.V. and Sekele, S.S. (2012), "Clustering of extreme winds in the mixed climate of South Africa", Wind Struct., 15(2), 87-109. https://doi.org/10.12989/was.2012.15.2.087.
  18. Lombardo, F.T. (2014), "Extreme wind speeds from multiple wind hazards excluding tropical cyclones", Wind Struct., 19(5), 467-480. https://doi.org/10.12989/was.2014.19.5.467.
  19. Luo, Y. and Huang, G. (2017), "Characterizing dependence of extreme wind pressures", J. Struct. Eng., 143(4), 04016208. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001699.
  20. Luo, Y., Huang, G., Chen, B., Liu, W., Li, M. and Liao, H. (2018), "Design wind speed estimation for puli bridge based on short-term measured data", Eng. Mech., 35(7), 74-82. https://doi.org/10.6052/j.issn.1000-4750.2017.03.0190.
  21. Liu, Y. and Hong, H. (2022), "Estimating quantiles of extreme wind speed using generalized extreme value distribution fitted based on the order statistics", Wind Struct., 34(6), 469-482. https://doi.org/10.12989/was.2022.34.6.469.
  22. Pan, Y. and Qin, J. (2022), "A novel probabilistic modeling framework for wind speed with highlight of extremes under data discrepancy and uncertainty", Appl. Energ., 326, 119938. https://doi.org/10.1016/j.apenergy.2022.119938.
  23. Quan, Y., Liu, L. and Gu, M. (2015), "Improvement of Cook method considering directional extreme wind speed", J. Tongji Univ., 43(2), 189-192. https://doi.org/JournalArticle/5b3b79f6c095d70f00779e69.
  24. Quan, Y., Wang, J. and Gu, M. (2017), "A joint probability distribution model of directional extreme wind speeds based on the t-Copula function", Wind Struct., 25(3), 261-282. https://doi.org/10.12989/was.2017.25.3.261.
  25. Ren, Y., Wen, Y., Liu, F. and Zhang, Y. (2022), "A short-term wind speed prediction method based on interval type 2 fuzzy model considering the selection of important input variables", J. Wind Eng. Ind. Aerod., 225, 104990. https://doi.org/10.1016/j.jweia.2022.104990.
  26. Saeed, A., Li, C., Gan, Z., Xie, Y. and Liu, F. (2022), "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution", Energy., 238(PC), 122012. https://doi.org/10.1016/j.energy.2021.122012.
  27. Wang, J., Quan, Y. and Gu, M. (2020), "Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation", Wind Struct., 30(2), 141. https://doi.org/10.12989/was.2020.30.2.141.
  28. Wang, D., Li, S., Sun C., Huang, G. and Yang, Q. (2021) "Assessment of wind-induced fragility of transmission towers under quasi-static wind load", Wind Struct., 33(4), 343-352. https://doi.org/10.12989/was.2021.33.4.343.
  29. Wang, J. and Cheng, Z. (2021), "Wind speed interval prediction model based on variational mode decomposition and multi-objective optimization", Appl. Soft Comput., 113(PA), 107848. https://doi.org/10.1016/j.asoc.2021.107848.
  30. Xu, F., Cai, C. and Zhang, Z. (2014), "Investigations on coefficient of variation of extreme wind speed", Wind Struct., 18(6), 633-650. https://doi.org/10.12989/was.2014.18.6.633.
  31. Yang, Q., Li, D., Hui, Y. and Law, S.S. (2020), "Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory", Wind Struct., 31(3), 197-207. https://doi.org/10.12989/was.2020.31.3.197.
  32. Yan, Y., Wang, X., Ren, F., Shao, Z. and Tian, C. (2022), "Wind speed prediction using a hybrid model of EEMD and LSTM considering seasonal features", Energy. Rep., 8(PP), 8965-8980. https://doi.org/10.1016/j.egyr.2022.07.007.
  33. Yu, E., Xu, G., Han, Y. and Li, Y. (2022), "An efficient short-term wind speed prediction model based on cross-channel data integration and attention mechanisms", Energy., 256, 124569. https://doi.org/10.1016/j.energy.2022.124569.
  34. Yang, F. and Niu, H. (2022), "Wind tunnel tests on wind loads acting on steel tubular transmission towers under skewed wind", Wind Struct., 35(2), 93-108. https://doi.org/10.12989/was.2022.35.2.093.
  35. Zhang, X. and Chen, X. (2015), "Assessing probabilistic wind load effects via a multivariate extreme wind speed model: A unified framework to consider directionality and uncertainty", J. Wind Eng. Ind. Aerod., 147, 30-42. https://doi.org/10.1016/j.jweia.2015.09.002.
  36. Zhang, X. and Chen, X. (2016), "Influence of dependence of directional extreme wind speeds on wind load effects with various mean recurrence intervals", J. Wind Eng. Ind. Aerod., 148, 45-56. https://doi.org/10.1016/j.jweia.2015.11.005.
  37. Zhang, X. and Chen, X. (2017), "Refined process up-crossing rate approach for estimating probabilistic wind load effects with consideration of directionality", J. Wind Eng. Ind. Aerod., 143(1), 04016148. https://doi.org/10.1061/(asce)st.1943-541x.0001625.
  38. Zhang, Y., Pan, G., Zhao, Y., Li, Q. and Wang, F. (2020), "Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution", Energ. Convers. Manage., 224, 19-33. https://doi.org/10.1016/j.enconman.2020.113346.
  39. Zhao, J., Xu, J. and Jing, H. (2023), "Wind tunnel tests of an irregular building and numerical analysis for vibration control by TLD", Wind Struct., 37(1), 1-13. https://doi.org/10.12989/was.2023.37.1.001.