• Title/Summary/Keyword: extreme precipitation events

Search Result 109, Processing Time 0.028 seconds

Climate Prediction by a Hybrid Method with Emphasizing Future Precipitation Change of East Asia

  • Lim, Yae-Ji;Jo, Seong-Il;Lee, Jae-Yong;Oh, Hee-Seok;Kang, Hyun-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1143-1152
    • /
    • 2009
  • A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and observed climate values. This paper focuses on predictions of future climate on a regional scale which are of potential economic values. The proposed method is obtained by coupling the classical CCA with empirical orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate responses, so that extreme events as well as a general feature such as long tails and unimodality can be revealed through the distribution. Results from real data examples demonstrate the promising empirical properties of the proposed approaches.

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

The Analysis of planning methode and case study for Model 'Climate Change Adaptation City' (기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석)

  • Kim, Jongkon
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

A development of hierarchical bayesian model for changing point analysis at watershed scale (유역단위에서의 연강수량의 변동점 분석을 위한 계층적 Bayesian 분석기법 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Kim, Yoon-Hee;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.75-87
    • /
    • 2017
  • In recent decades, extreme events have been significantly increased over the Korean Peninsula due to climate variability and climate change. The potential changes in hydrologic cycle associated with the extreme events increase uncertainty in water resources planning and designing. For these reasons, a reliable changing point analysis is generally required to better understand regime changes in hydrologic time series at watershed scale. In this study, a hierarchical changing point analysis approach that can apply in a watershed scale is developed by combining the existing changing point analysis method and hierarchical Bayesian method. The proposed model was applied to the selected stations that have annual rainfall data longer than 40 years. The results showed that the proposed model can quantitatively detect the shift in precipitation in the middle of 1990s and identify the increase in annual precipitation compared to the several decades prior to the 1990s. Finally, we explored the changes in precipitation and sea level pressure in the context of large-scale climate anomalies using reanalysis data, for a given change point. It was concluded that the identified large-scale patterns were substantially different from each other.

Simulation of Daily Soil Moisture Content and Reconstruction of Drought Events from the Early 20th Century in Seoul, Korea, using a Hydrological Simulation Model, BROOK

  • Kim, Eun-Shik
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • To understand day-to-day fluctuations in soil moisture content in Seoul, I simulated daily soil moisture content from 1908 to 2009 using long-term climatic precipitation and temperature data collected at the Surface Synoptic Meteorological Station in Seoul for the last 98 years with a hydrological simulation model, BROOK. The output data set from the BROOK model allowed me to examine day-to-day fluctuations and the severity and duration of droughts in the Seoul area. Although the soil moisture content is highly dependent on the occurrence of precipitation, the pattern of changes in daily soil moisture content was clearly quite different from that of precipitation. Generally, there were several phases in the dynamics of daily soil moisture content. The period from mid-May to late June can be categorized as the initial period of decreasing soil moisture content. With the initiation of the monsoon season in late June, soil moisture content sharply increases until mid-July. From the termination of the rainy season in mid-July, daily soil moisture content decreases again. Highly stochastic events of typhoons from late June to October bring large amount of rain to the Korean peninsula, culminating in late August, and increase the soil moisture content again from late August to early September. From early September until early October, another sharp decrease in soil moisture content was observed. The period from early October to mid-May of the next year can be categorized as a recharging period when soil moisture content shows an increasing trend. It is interesting to note that no statistically significant increase in mean annual soil moisture content in Seoul, Korea was observed over the last 98 years. By simulating daily soil moisture content, I was also able to reconstruct drought phenomena to understand the severity and duration of droughts in Seoul area. During the period from 1908 to 2009, droughts in the years 1913, 1979, 1939, and 2006 were categorized as 'severe' and those in 1988 and 1982 were categorized as 'extreme'. This information provides ecologists with further potential to interpret natural phenomenon, including tree growth and the decline of tree species in Korea.

A Modified Standardized Precipitation Index (MSPI) and Its Application (수정 표준강수지수의 제안 및 적용)

  • Ryoo, So-Ra;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.553-567
    • /
    • 2004
  • This study proposes a modified standardized precipitation index (MSPI) which was developed to make up for the weakness of the SPI. Both MSPI and SPI are applied to the monthly rainfall at the Seoul station for the drought analysis. The MSPI proposed is nothing but the SPI for the normalized monthly rainfall, that is, an extra step for normalizing the monthly rainfall is included before driving the SPI. Thus, the MSPI has a structure to transfer the relative amount of rainfall to the next months, but the SPI the absolute amount of rainfall. The monthly rainfall data at the Seoul station used in this study are those collected from 1777 to 1996. The rainfall data collected before and after the long dry period around 1900 were also analyzed separately for the comparison. The results derived are as follows. (1) The MSPI was found to be more practical compared to the SPI. This was assured by comparing the analysis results of the data including and excluding the long dry period around 1900. (2) The MSPI is found to be less sensitive than the SPI to the extreme rainfall events. For the MSPI, the occurrence probabilities of moderate drought before and after the long dry period are similar, but those for the extreme drought becomes slightly decreased after the long dry period (from about 18 years of return period before the long dry period to the 16 years after the long dry period). However, the duration becomes longer after the long dry period (the duration for the extreme drought has been increased from 2 to 2.5 months after the long dry period). This results can also be compared with a rather unreasonable result derived by applying the SPI (for the extreme drought the return period has been decreased to be from 25 to 10 years after the long dry period, on the other hand the duration has been increased from 1.5 months to 3.5 months). So, we man conclude that the MSPI is more practical for the drought analysis that the SPI.

Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed (비정상성을 고려한 원평천 유역의 미래 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Park, Jihoon;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.139-152
    • /
    • 2015
  • Along with climate change, it is reported that the scale and frequency of extreme climate events show unstable tendency of increase. Thus, to comprehend the change characteristics of precipitation data, it is needed to consider non-stationary. The main objectives of this study were to estimate future design floods for Wonpyeongcheon watershed based on RCP (Representative Concentration Pathways) scenario. Wonpyeongcheon located in the Keum River watershed was selected as the study area. Historical precipitation data of the past 35 years (1976~2010) were collected from the Jeonju meteorological station. Future precipitation data based on RCP4.5 were also obtained for the period of 2011~2100. Systematic bias between observed and simulated data were corrected using the quantile mapping (QM) method. The parameters for the bias-correction were estimated by non-parametric method. A non-stationary frequency analysis was conducted with moving average method which derives change characteristics of generalized extreme value (GEV) distribution parameters. Design floods for different durations and frequencies were estimated using rational formula. As the result, the GEV parameters (location and scale) showed an upward tendency indicating the increase of quantity and fluctuation of an extreme precipitation in the future. The probable rainfall and design flood based on non-stationarity showed higher values than those of stationarity assumption by 1.2%~54.9% and 3.6%~54.9%, respectively, thus empathizing the necessity of non-stationary frequency analysis. The study findings are expected to be used as a basis to analyze the impacts of climate change and to reconsider the future design criteria of Wonpyeongcheon watershed.

Tropical cyclone activity over the western North Pacific associated with Pacific-Japan teleconnection pattern and its impacts on extreme events over the Korean peninsula

  • Kim, Jong-Suk;Zhou, Wen;Li, Cheuk-Yin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.38-38
    • /
    • 2012
  • The East Asia (EA) region including China, Taiwan, Japan, and Korea are especially vulnerable to hydrometerological extremes during the boreal summer (June-September). This study, therefore, pursued an exploratory analysis to improve better understanding of the potential impacts of the two types of PJ patterns on WNP Tropical cyclone (TC) activities and TC-induced extreme moisture fluxes over Korea's five major river basins. This study shows that during positive PJ years, the large-scale atmospheric environments are more favorable for the TC activities than those in negative PJ years. During positive PJ year, it is found that there are weaker wind shear, stronger rising motion, as well as large relative humidity over the Korean peninsula (KP) compared to negative PJ years. As a result, TCs making landfall are more exhibited over the southeastern portions of South Korea. Despite the relatively modest sample size, we expect that insights and results presented here will be useful for developing a critical support system for the effective reduction and mitigation of TC-caused disasters, as well as for water supply management in coupled human and natural systems.

  • PDF

Evaluation of Extreme Rainfall based on Typhoon using Nonparametric Monte Carlo Simulation and Locally Weighted Polynomial Regression (비매개변수적 모의발생기법과 지역가중다항식을 이용한 태풍의 극치강우량 평가)

  • Oh, Tae-Suk;Moon, Young-Il;Chun, Si-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.193-205
    • /
    • 2009
  • Typhoons occurred in the tropical Pacific region, these might be affected the Korea moving toward north. The strong winds and the heavy rains by the typhoons caused a natural disaster in Korea. In the research, the heavy rainfall events based on typhoons were evaluated quantitative through various statistical techniques. First, probability precipitation and typhoon probability precipitation were compared using frequency analysis. Second, EST probability precipitation was calculated by Empirical Simulation Techniques (EST). Third, NL probability precipitation was estimated by coupled Nonparametric monte carlo simulation and Locally weighted polynomial regression. At the analysis results, the typhoons can be effected Gangneung and Mokpo stations more than other stations. Conversely, the typhoons can be effected Seoul and Inchen stations less than other stations. Also, EST and NL probability precipitation were estimated by the long-term simulation using observed data. Consequently, major hydrologic structures and regions where received the big typhoons impact should be review necessary. Also, EST and NL techniques can be used for climate change by the global warming. Because, these techniques used the relationship between the heavy rainfall events and the typhoons characteristics.