• Title/Summary/Keyword: extracellular-signal regulated kinase

Search Result 471, Processing Time 0.028 seconds

Protective Effects of Quercetin-3-O-glucuronide against 1-methyl-4-phenylpyridinium-induced Neurotoxicity (1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 quercetin-3-O-glucuronide의 보호 효과)

  • Pariyar, Ramesh;Bastola, Tonking;Seo, Jungwon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.191-197
    • /
    • 2019
  • Parkinson's disease (PD) is a progressive neurodegenerative disease that mainly affects motor system with clinical features such as bradykinesia, rigidity, tremor and abnormal posture. PD is characterized by the death of dopaminergic neurons in the substantia nigra pars compacta, which is associated with accumulation of oxidative stress and dysregulation of intracellular signaling pathway. Quercetin-3-O-glucuronide (Q3GA), a major metabolite of quercetin, has been reported to have neuroprotective effects. In this study, we examined the neuroprotective effect of Q3GA against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced neurotoxicity of PD and the underlying molecular mechanisms in SH-SY5Y cells. MTT and LDH assay showed that Q3GA significantly decreased $MPP^+$-induced cell death, which is accompanied by a reduction in poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular reactive oxygen species (ROS) with the reduction of Bax/ Bcl-2 ratio. Moreover, Q3GA significantly increased the phosphorylation of Akt and cAMP response element binding protein (CREB), but it has no effects on the phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, these results demonstrate that Q3GA significantly attenuates $MPP^+$-induced neurotoxicity through ROS reduction and Akt/CREB signaling pathway in SH-SY5Y cells. Our findings suggest that Q3GA might be one of the potential candidates for the prevention and/or treatment of PD.

Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes

  • Pan, Shifeng;Chen, Yongfang;Zhang, Lin;Liu, Zhuang;Xu, Xingyu;Xing, Hua
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.763-777
    • /
    • 2022
  • Objective: Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods: The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results: The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion: These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.

Antioxidant Activity of Cannabidiol (CBD) and Effect on Its Proliferation in Human Dermal Papilla Cells (칸나비디올(CBD)의 항산화 활성 및 인간 모유두 세포 증식에 미치는 영향)

  • Soo Hyun Kim;Kyu-Sang Sim;Jung Yoon Cheon;Jae-Woong Jang;Su Jin Jeong;Ye Hei Seo;Hye Myoung Ahn;Bong-Geun Song;Gi-Seok Kwon;Jung-Bok Lee
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • At present, many countries around the world are legalizing cannabis and its products, and research on various treatments using cannabis is being actively conducted. However, the cannabis plant contains other compounds whose biological effects have not yet been established. We investigated the effect of cannabidiol (CBD) on hair growth in human dermal papilla cells (HDPCs). 2,2'-Azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays were performed to determine the antioxidant activity of CBD. The HDPCs viability of CBD was examined via water-soluble tetrazolium salt (WST-1) assay. The expression of hair-loss-related markers in HDPCs by CBD treatment was analyzed by real-time PCR and western blotting. The DPPH, ABTS radical scavenging activity assay showed that CBD had superior antioxidant activities. In HDPCs, CBD increased cellular proliferation at concentrations without cytotoxicity. It also increased the expressions of fibroblast growth factor 1 (FGF1), fibroblast growth factor 7 (FGF7), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF). These results correlated with a decrease in the expression of inhibition-related factors, such as androgen receptor (AR) and transforming growth factor beta 1 (TGF-B1). Moreover, CBD resulted in a significant increase in the phosphorylation of AKT and extracellular signal-regulated kinase (ERK). Therefore, it is suggested that CBD may be a potential remedy for the treatment of alopecia.

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael;Catarina Rodrigues ;Gilberto Maia Santos ;Ines Castela ;Ines Barreiros-Mota ;Maria Joao Almeida ;Conceicao Calhau ;Ana Faria ;Joao Ricardo Araujo
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.616-630
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

The Anti-inflammatory Effect of Skipjack Tuna (Katsuwonus pelamis) Oil in LPS-induced RAW 264.7 Cells and Mouse Models (LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • This study was carried out to demonstrate the anti-inflammatory effect of tuna oil (TO) using LPS-induced inflammation responses and mouse models. First, nitric oxide (NO) and pro-inflammatory cytokines levels were suppressed up to 50% with increasing concentrations of TO without causing any cytotoxicity. Also, the expression of a variety of proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), was suppressed in a dosedependent manner by treatment with TO. Furthermore, TO also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 protein kinase (p38). Moreover, in in vivo testing the formation of ear edema was reduced at the highest dose tested compared to that in the control, and a reduction of ear thickness and the number of mast cells was observed in histological analysis. In acute toxicity test, no mortalities occurred in mice administrated 5,000 mg/kg body weight of TO over a two-week observation period. Our results suggest that TO has a considerable anti-inflammatory property through the suppression of inflammatory mediator productions and that it could prove to be useful as a potential anti-inflammatory therapeutic material.

Role of PKR and EGR-1 in Induction of Interleukin-S by Type B Trichothecene Mycotoxin Deoxynivalenol in the Human Intestinal Epithelial Cells (B형 트리코테센 곰팡이 독소 데옥시니발레놀에 의한 인체 장관 상피세포 염증성 인터루킨 8유도에서의 PKR과 EGR-1의 상호 역할 규명)

  • Park, Seong-Hwan;Yang, Hyun;Choi, Hye-Jin;Park, Yeong-Min;Ahn, Soon-Cheol;Kim, Kwan-Hoi;Lee, Soo-Hyung;Ahn, Jung-Hoon;Chung, Duk-Hwa;Moon, Yu-Seok
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.949-955
    • /
    • 2009
  • Mucosal epithelia sense external stress signals and transmit them to the intracellular cascade responses. Ribotoxic stress-producing chemicals such as deoxynivalenol (DON) or other trichothecene mycotoxins have been linked with gastrointestinal inflammatory diseases by Fusarium-contamination. The purpose of this study was to test the hypothesis that DON evokes the epithelial sentinel signals of RNA-dependent protein kinase (PKR) and early growth response gene 1 (EGR-1), which together contribute to the pro-inflammatory cytokine interleukin 8 (IL-8) in human intestinal epithelial cells. PKR suppression by the dominant negative PKR expression attenuated DON-stimulated interleukin-8 production. Moreover, 1L-8 transcriptional activation by DON was also reduced by PKR inhibition in the human intestinal epithelial cells. Treatment with the PKR inhibitor also suppressed EGR-1 promoter activity, mRNA and protein induction, although mitogen-activated protein (MAP) kinases such as extracellular signal-regulated protein kinases (ERK) 1/2, p38, c-Jun N-terminal Kinase (INK) were little affected or even enhanced in presence of a PKR inhibitor. These patterns were also compared in the EGR-1-suppressed cells, which showed much more suppressed production of 1L-8. All things taken into consideration, DON-activated sentinel signals of EGR-1 via PKR mediated interleukin-8 production in human intestinal epithelial cells, which provide insight into the possible general mechanism associated with mucosal inflammation as an intestinal toxic insult by ribotoxic trichothecene mycotoxins.

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

Anti-inflammatory effect of Sinhyowoldo-san Extract with regard to Pro-inflammatory Mediators in PMA plus A23187-induced Human Mast Cells (인간 비만세포에서 PMA와 A23187에 의해 유도된 전염증 매개체에 대한 신효월도산 추출물의 항염증 효과)

  • Wi, Gyeong;Yang, Da-Wun;Kang, Ok-Hwa;Kim, Sung-Bae;Mun, Su-Hyun;Seo, Yun-Soo;Kang, Da-Hye;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.117-123
    • /
    • 2014
  • Objectives : Sinhyowoldo-san (SHWDS) is said to be a traditional medicine used for shigellosis, abdominal pain, diarrhea. But mechanism of SHWDS mediated-modulation of immune function is not sufficiently understood. To ascertain the molecular mechanisms of SHWDS 70% EtOH extract on pharmacological and biochemical actions in inflammation, we researched the effect of pro-inflammatory mediators in phorbol-12-myristate-13-acetate (PMA)+ A23187-activated human mast cell line (HMC-1). Methods : In the present research, cell viability was measured by MTS assay. pro-inflammatory cytokine production was measured by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to analyze the activation of mitogen-activated protein kinases (MAPKs), nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). The investigation focused on whether SHWDS inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8), MAPKs and $NF-{\kappa}B$ in PMA+A23187-activated HMC-1 cells. Results : SHWDS has no cytotoxicity at measured concentration (50, 100, and $250{\mu}g/ml$). SHWDS ($250{\mu}g/ml$) inhibits pro-inflammatory cytokine expression in PMA+ A23187-activated HMC-1 cells. Moreover, SHWDS inhibited cyclooxygenase (COX)-2 expression. In activated HMC-1 cells, SHWDS suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2) and c-jun N-terminal Kinase (JNK 1/2). Then, SHWDS suppressed activation of nuclear factor $NF-{\kappa}B$ in nuclear, degradation of IkB ${\alpha}$ in cytoplasm. Conclusions : We propose that SHWDS has an anti-inflammatory therapeutic potential, which may result from inhibition of ERK 1/2, JNK 1/2 phosphorylation and $NF-{\kappa}B$ activation, thereby decreasing the expression of pro-inflammatory genes.

Anti-inflammatory Activities Verification of Ambrosia trifida L. extract in RAW 264.7 Cells (RAW 264.7 세포에서의 단풍잎돼지풀 추출물의 항염증 활성 검증)

  • Yoo, Dan-Hee;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.79-89
    • /
    • 2020
  • This study was performed to evaluate the anti-inflammatory activities of 70% ethanol extract from Ambrosia trifida L. (AT). The electron donating ability and ABTS+ radical scavenging ability of extract from AT was shown to be 84.1% and 92.5% at 1,000 ㎍/ml concentration. The astringent effect of extract from AT was shown to be 94.7% at 1,000 ㎍/ml. The anti- inflammatory activities of extract of AT were investigated using RAW 264.7 cells induced by lipopolysaccharide (LPS). The cell toxicity effect of AT extract on RAW 264.7 performed MTT assay. As a result of the measured cell toxicity effect, 90% or more was shown with cell viability at a 500 ㎍/ml concentration. In nitric oxide synthesis inhibition effect, it was shown that extract from AT concentration dependent inhibited nitric oxide production. The protein expression inhibitory effect of AT extract was measured by western blot at 25, 50, and 100 ㎍/ml concentration and the β-actin used as a positive control. Consequently, the inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 protein expression inhibitory effect was decreased by 8.6%, 25.1% at 100 ㎍/ml concentration. The phosphorylation of extracellular signal-regulated kinase 1/2, p38, c-Jun NH2-terminal kinase and Iκ-Bα protein expression inhibitory effect was a decreased dependent concentration. The mRNA expression inhibitory effect was measured by reverse transcription - polymerase chain reaction at 25, 50, and 100 ㎍/ml concentration and the glyceraldehyde-3-phosphate dehydrogenase used as a positive control. Consequently, the iNOS, COX-2, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α mRNA expression inhibition effect was a decreased dependent concentration in an LPS-activated macrophage. In conclusion, AT extract may have some effects on inflammatory factors as potential anti-inflammatory agents and natural substance for cosmetics.

Effects of Black Soybean and Fermented Black Soybean Extracts on Proliferation of Human Follicle Dermal Papilla Cells (검은콩과 발효검은콩 추출물이 인간 모유두 세포 성장에 미치는 효과)

  • Choi, Ji-Hye;Lee, Myoungsook;Kim, Hyun Jung;Kwon, Jung Il;Lee, Yunkyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.671-680
    • /
    • 2017
  • This study was conducted to examine the effects and potential mechanisms of action of black soybean extracts and fermented black soybean extracts by Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animals subsp. lactis BB-12 (BB-12) on proliferation of human follicle dermal papilla cells (HFDPC). We examined changes in pH, total polyphenol, sugar, and reducing sugar contents according to fermentation period of black soybean extracts. Assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was performed to determine cell toxicity levels of the four black soybean extracts [black soybean water extract (BWE), black soybean ethanol extract (BEE), fermented BWE (F-BEW), and fermented BEE (F-BEE)]. Changes in mRNA expression levels of hair growth promoting factors and hair growth inhibiting factors by the four black soybean extracts were measured by real-time PCR. In addition, phosphorylation levels of mitogen-activated protein kinase family proteins were measured by western blot analysis. As a result, fermentation of black soybeans significantly reduced pH, total polyphenols, and sugar/reducing sugar contents. All four black soybean extracts showed no cellular toxicity in HFDPC. In fact, BEE significantly enhanced cell viability of HFDPC at $100{\mu}g/mL$ compared to control. BWE, BEE, and BWE-F significantly increased mRNA expression of vascular endothelial growth factor, and all four extracts increased mRNA expression of fibroblast growth factor. However, mRNA expression levels of apoptosis-related genes were not affected by black soybean extracts in HFDPC. Furthermore, BWE, BEE, and BWE-F significantly increased phosphorylation levels of extracellular signal-regulated kinase compared to control. Taken together, we demonstrated that black soybean extracts enhanced proliferation of human follicle dermal papilla cells partially via activation of hair growth promoting factors, although no particular significant effects on proliferation were observed by fermentation of black soybeans.