Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.2.191

Protective Effects of Quercetin-3-O-glucuronide against 1-methyl-4-phenylpyridinium-induced Neurotoxicity  

Pariyar, Ramesh (Institute of Pharmaceutical Research and Development,College of Pharmacy, Wonkwang University)
Bastola, Tonking (Institute of Pharmaceutical Research and Development,College of Pharmacy, Wonkwang University)
Seo, Jungwon (Institute of Pharmaceutical Research and Development,College of Pharmacy, Wonkwang University)
Publication Information
Journal of Life Science / v.29, no.2, 2019 , pp. 191-197 More about this Journal
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that mainly affects motor system with clinical features such as bradykinesia, rigidity, tremor and abnormal posture. PD is characterized by the death of dopaminergic neurons in the substantia nigra pars compacta, which is associated with accumulation of oxidative stress and dysregulation of intracellular signaling pathway. Quercetin-3-O-glucuronide (Q3GA), a major metabolite of quercetin, has been reported to have neuroprotective effects. In this study, we examined the neuroprotective effect of Q3GA against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced neurotoxicity of PD and the underlying molecular mechanisms in SH-SY5Y cells. MTT and LDH assay showed that Q3GA significantly decreased $MPP^+$-induced cell death, which is accompanied by a reduction in poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular reactive oxygen species (ROS) with the reduction of Bax/ Bcl-2 ratio. Moreover, Q3GA significantly increased the phosphorylation of Akt and cAMP response element binding protein (CREB), but it has no effects on the phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, these results demonstrate that Q3GA significantly attenuates $MPP^+$-induced neurotoxicity through ROS reduction and Akt/CREB signaling pathway in SH-SY5Y cells. Our findings suggest that Q3GA might be one of the potential candidates for the prevention and/or treatment of PD.
Keywords
Akt; neurotoxicity; Parkinson's disease; quercetin-3-O-glucuronide; ROS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jantas, D., Greda, A., Golda, S., Korostynski, M., Grygier, B., Roman, A., Pilc, A. and Lason, W. 2014. Neuroprotective effects of metabotropic glutamate receptor group II and III activators against $MPP^+$-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state. Neuropharmacology 83, 36-53.   DOI
2 Lee, B., Cao, R., Choi, Y. I., Cho, H. E., Rhee, A. D., Hah, C. K., Hoyt, K. R. and Obrietan, K. 2009. The CREB/CRE transcriptional pathway: protection against oxidative stressmediated neuronal cell death. J. Neurochem. 108, 1251-1265.   DOI
3 Li, J., O, W., Li, W., Jiang, Z. G. and Ghanbari, H. A. 2013. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 14, 24438-24475.   DOI
4 Lin, Y. L., Wang, G. J., Huang, C. L., Lee, Y. C., Liao, W. C., Lai, W. L., Lin, Y. J. and Huang, N. K. 2009. Ligusticum chuanxiong as a potential neuroprotectant for preventing serum deprivation-induced apoptosis in rat pheochromocytoma cells: functional roles of mitogen-activated protein kinases. J. Ethnopharmacol. 122, 417-423.   DOI
5 Lonze, B. E. and Ginty, D. D. 2002. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605-623.   DOI
6 Lonze, B. E., Riccio, A., Cohen, S. and Ginty, D. D. 2002. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371-385.   DOI
7 Lu, S., Lu, C., Han, Q., Li, J., Du, Z., Liao, L. and Zhao, R. C. 2011. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology 279, 189-195   DOI
8 Mattson, M. P. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell. Biol. 1, 120-129.   DOI
9 Mu, X., Yuan, X., Du, L. D., He, G. R. and Du, G. H. 2016. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats. J. Asian Nat. Prod. Res. 18, 65-71.   DOI
10 Mukai, R., Kawabata, K., Otsuka, S., Ishisaka, A., Kawai, Y., Ji, Z. S., Tsuboi, H. and Terao, J. 2012. Effect of quercetin and its glucuronide metabolite upon 6-hydorxydopamineinduced oxidative damage in Neuro-2a cells. Free Radic. Res. 46, 1019-1028.   DOI
11 Murakami, A., Ashida, H. and Terao, J. 2008. Multitargeted cancer prevention by quercetin. Cancer Lett. 269, 315-325.   DOI
12 Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G. and Mnissier-de Murcia, J. 1998. Importance of poly (ADP-ribose) polymerase and its cleavage in apoptosis Lesson from an uncleavable mutant. J. Biol. Chem. 273, 33533-33539.   DOI
13 Oltvai, Z. N. and Korsmeyer, S. J. 1994. Check points of dueling dimers foil death wishes. Cell 79, 189-192.   DOI
14 Ossola, B., Kaariainen, T. M. and Mannisto, P. T. 2009. The multiple faces of quercetin in neuroprotection. Expert Opin. Drug Saf. 8, 397-409.   DOI
15 Perez, A., Gonzalez-Manzano, S., Jimenez, R., Perez-Abud, R., Haro, J. M., Osuna, A., Santos-Buelga, C., Duarte, J. and Perez-Vizcaino, F. 2014. The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity. Pharmacol. Res. 89, 11-18.   DOI
16 Perez-Vizcaino, F., Duarte, J., Jimenez, R., Santos-Buelga, C. and Osuna, A. 2009. Antihypertensive effects of the flavonoid quercetin. Pharmacol. Rep. 61, 67-75.   DOI
17 Chun, H. S., Gibson, G. E., DeGiorgio, L. A., Zhang, H., Kidd, V. J. and Son, J. H. 2001. Dopaminergic cell death induced by $MPP^+$, oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 76, 1010-1021.   DOI
18 Pu, X., Song, Z., Li, Y., Tu, P. and Li, H. 2003. Acteoside from Cistanche salsa inhibits apoptosis by 1-methyl-4-phenylpyridinium ion in cerebellar granule neurons. Planta Med. 69, 65-66.   DOI
19 Baral, S., Pariyar, R., Kim, J., Lee, H. S. and Seo, J. 2017. Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol. Aging 52, 39-52.   DOI
20 Carlezon Jr, W. A., Duman, R. S. and Nestler, E. J. 2005. The many faces of CREB. Trends Neurosci. 28, 436-445.   DOI
21 Comalada, M., Camuesco, D., Sierra, S., Ballester, I., Xaus, J., Galvez, J. and Zarzuelo, A. 2005. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kB pathway. Eur. J. Immunol. 35, 584-592.   DOI
22 Costa, L. G., Garrick, J. M., Roque, P. J. and Pellacani, C. 2016. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016, 2986796.
23 Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241.   DOI
24 Du, K. and Montminy, M. 1998. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377-32379.   DOI
25 Gu, X., Liu, L., Shen, Q. and Xing, D. 2017. Photoactivation of ERK/CREB/VMAT2 pathway attenuates MPP+-induced neuronal injury in a cellular model of Parkinson's disease. Cell Signal. 37, 103-114.   DOI
26 Fearnley, J. M. and Lees, A. J. 1991. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283-2301.   DOI
27 Fernandes-Alnemri, T., Litwack, G. and Alnemri, E. S. 1994. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J. Biol. Chem. 269, 30761-30764.   DOI
28 Forno, L. S. 1996. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol. 55, 259-272.   DOI
29 Itano, Y. and Nomura, Y. 1995. 1-methyl-4-phenyl-pyridinium ion (MPP+) causes DNA fragmentation and increases the Bcl-2 expression in human neuroblastoma, SHSY5Y cells, through different mechanisms. Brain Res. 704, 240-245.   DOI
30 Wang, H., Xu, J., Lazarovici, P., Quirion, R. and Zheng, W. 2018. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of Schizophrenia. Front. Mol. Neurosci. 11, 255.   DOI
31 Wang, Y., Gao, J., Miao, Y., Cui, Q., Zhao, W., Zhang, J. and Wang, H. 2014. Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J. Mol. Neurosci. 53, 537-545.   DOI
32 Saura, C. A. and Valero, J. 2011. The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev. Neurosci. 22, 153-169.   DOI
33 Weng, Z., Signore, A. P., Gao, Y., Wang, S., Zhang, F., Hastings, T., Yin, X. M. and Chen, J. 2007. Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling. J. Biol. Chem. 282, 34479-34491.   DOI
34 Zhang, C., Yuan, X., Hu, Z., Liu, S., Li, H., Wu, M., Yuan, J., Zhao, Z., Su, J. and Wang, X. 2017. Valproic acid protects primary dopamine neurons from $MPP^+$-induced neurotoxicity. Biomed. Res. Int. 2017, 8124501.
35 Zhu, J. H., Horbinski, C., Guo, F., Watkins, S., Uchiyama, Y. and Chu, C. T. 2007. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170, 75-86.   DOI