• Title/Summary/Keyword: extracellular vesicles

Search Result 68, Processing Time 0.019 seconds

Eupafolin Suppresses P/Q-Type Ca2+ Channels to Inhibit Ca2+/Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals

  • Chang, Anna;Hung, Chi-Feng;Hsieh, Pei-Wen;Ko, Horng-Huey;Wang, Su-Jane
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.630-636
    • /
    • 2021
  • Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.

Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth

  • Menon, Ramkumar
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.370-379
    • /
    • 2022
  • Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.

Single beam acoustic tweezers for biomedical applications (단일 빔 음향 집게를 이용한 바이오메디컬 응용 연구)

  • Hae Gyun Lim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.452-459
    • /
    • 2023
  • Acoustic tweezers represent an exceptionally versatile and adaptable collection of instruments that harness the intrinsic power of sound waves to manipulate a wide spectrum of bioparticles, ranging from minuscule extracellular vesicles at the nanoscale to more substantial multicellular organisms measuring in millimeters. This field of research has witnessed remarkable progress over the course of the past few decades, primarily in the domain of Single Beam Acoustic Tweezers (SBAT) which utilizes a single element transducer for its operation. Initially conceived as a method for particle trapping, SBAT has since evolved into an advanced platform capable of achieving precise translation of cells and organisms. Recent groundbreaking advancements have significantly enhanced the capabilities of SBAT, unlocking new functionalities such as particle/cell separation and controlled deformation of single cells. These advancements have propelled SBAT to the forefront of bioparticle/cell manipulation, gathering attention within the scientific community. This review explores the core principles of SBAT and how sound waves affect bioparticles/cells. We aim to build a strong conceptual foundation for understanding advancements in this field by detailing its principles and methodologies.

Clinical Application of Exosomes for COVID-19 and Diagnosis (COVID-19 치료 및 진단을 위한 Exosome의 임상적 적용)

  • June Seok HEO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Exosomes are nano-sized membrane-bound extracellular vesicles containing various biological molecules, such as nucleic acids, proteins, and lipids, which can be used to modulate physiological processes. The exosomal molecules secreted by cells can be extensively used as tools for diagnosis and therapy. Exosomes carry specific molecules released by the cells they originate from, which can be transferred to surrounding cells or tissues by the exosome. For these reasons, exosomes can be exploited as biomarkers for diagnosis, carriers for drug delivery, as well as therapeutics. In stem cell technology, exosomes have been an attractive option because they can be used as safer therapeutic agents for stem cell-based cell-free therapy. Recently, studies have demonstrated the safety and efficacy of mesenchymal stem cell-derived exosomes in alleviating symptoms associated with coronavirus disease 2019 as they have anti-inflammatory and immunomodulatory potential. Performing multiple studies on exosomes would provide innovative next-generation options for clinical diagnostics and therapy. This review summarizes the use of exosomes focusing on their diverse roles. In addition, the potential of exosomes is illustrated with a focus on how exosomes can be exploited as powerful tools in the days to come.

A Study on the Mobilization of Calcium by Ginseng Alcohol Extract in Rabbit Vascular Smooth Muscle (가토 대동맥 평활근에서 인삼 알콜 추출물에 의한 Calcium 동원에 관한 연구)

  • Kim, Yong-Bae;Lee, Young-Ho;Kang, Bok-Soon;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.77-90
    • /
    • 1990
  • There have been conflicting reports concerning the effect of Panax ginseng on the contractility of vascular smooth muscle, i.e., Panax ginseng extract has been reported to cause relaxation, contraction or to have no effect on the tension of vascular smooth muscle. A further investigation of $Ca^{++}$ stores which supply $Ca^{++}$ for contraction of vascular smooth muscle is needed to understand the underlying mechanisms of this conflicting effect of ginseng alcohol extract (GAE). The present study was intended to examine the sources of calcium mobilized for contraction of vascular smooth muscle by GAE. Aortic ring preparations were made from the rabbit thoracic aorta and endothelial cells were removed from the ring. The contractility of the aortic ring was measured under various experimental conditions and $Ca^{++}$ flux across the membrane of aortic ring and the sarcoplasmic reticulum and mitochondria were measured with a calcium selective electrode. The result were summarized as follows; 1) At low concentration of extracellular $Ca^{++}$, GAE increased the contractility of vascular smooth muscle in dose-dependent fashion except high concentration $Ca^{++}$ (1 mM). 2) In the presence of ryanodine, GAE still increased contractility of vascular smooth muscle as much as control group, but in the presence of caffeine, GAE increased it significantly. i.e. Their effects seemed to be additive. 3) In the presence of verapamil+lanthanum, and verapamil+lanthanum+ryanodine, the contractility of the vascular smooth muscle was decreased, but a dose dependent increase in vascular tension was still demonstrated by GAE although total tension was low. 4) GAE increased $Ca^{++}$ efflux from vascular smooth muscle cells, but have no effect on $Ca^{++}$ influx. 5) GAE increased $Ca^{++}$ efflux from sarcoplasmic reticulum and mitochondria vesicles. From the above results, it may be concluded that GAE increased the release of $Ca^{++}$ from sarcoplasmic reticulum, mitochondria or other intracellular $Ca^{++}$ stores of vascular smooth muscle, but it does not increase $Ca^{++}$ influx across the plasma membrane.

  • PDF

Next-generation Probiotics, Parabiotics, and Postbiotics (Next-generation probiotics, parabiotics 및 postbiotics)

  • Cho, Kwang Keun;Lee, Seung Ho;Choi, In Soon;Lee, Sang Won
    • Journal of Life Science
    • /
    • v.31 no.6
    • /
    • pp.595-602
    • /
    • 2021
  • Human intestinal microbiota play an important role in the regulation of the host's metabolism. There is a close pathological and physiological interaction between dysbiosis of the intestinal microflora and obesity and metabolic syndrome. Akkermansia muciniphila, which was recently isolated from human feces, accounts for about 1-4% of the intestinal microbiota population. The use of A. muciniphila- derived external membrane protein Amuc_1100 and extracellular vesicles (EVs) could be a new strategy for the treatment of obesity. A. muciniphila is considered a next-generation probiotic (NGP) for the treatment of metabolic disorders, such as obesity. Faecalibacterium prausnitzii accounts for about 5% of the intestinal microbiota population in healthy adults and is an indicator of gut health. F. prausnitzii is a butyrate-producing bacterium, with anti-inflammatory effects, and is considered an NGP for the treatment of immune diseases and diabetes. Postbiotics are complex mixtures of metabolites contained in the cell supernatant secreted by probiotics. Parabiotics are microbial cells in which probiotics are inactivated. Paraprobiotics and postbiotics have many advantages over probiotics, such as clear chemical structures, safe dose parameters, and a long shelf life. Thus, they have the potential to replace probiotics. The most natural strategy to restore the imbalance of the intestinal ecosystem normally is to use NGPs among commensal bacteria in the gut. Therefore, it is necessary to develop new foods or drugs such as parabiotics and postbiotics using NGPs.

Application of Exosome for Diagnosis and Treatment of Diseases in the Central Nervous System (중추신경계 질환의 진단과 치료를 위한 엑소좀의 활용)

  • Jia Bak;Yun-Sik Choi
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.754-765
    • /
    • 2023
  • Exosomes are a type of extracellular vesicle containing proteins and messenger and microRNAs; they are secreted by all cell types. Once released, exosomes are selectively taken up by other cells adjacent or at a distance, releasing their contents and reprogramming the target cells. Since exosomes are natural vesicles produced by cells as small sizes, it is generally accepted that exosomes have a non-toxic nature and non-immunogenic behaviors. Recently, exosomes have elicited scientific attention as drug delivery vehicles to the central nervous system. The central nervous system has a blood-brain barrier that makes it difficult for drugs to penetrate. Thus, the blood-brain barrier has been a major obstacle to the development of drugs for treating neurodegenerative diseases. However, accumulating evidence suggests that exosomes can cross the blood-brain barrier primarily through transcytosis. Consequently, exosomes are expected to become a new delivery vehicle that can cross the blood-brain barrier and deliver drugs into the brain parenchyma. In addition, since different types of exosomes are secreted depending on the cell type and disease state, exosomes can also be utilized as biomarkers for the diagnosis of diseases in the central nervous system. In this review, we summarized recent research trends on exosomes, including clinical trials as biomarkers and treatment options for diseases in the central nervous system.

An Ultrastructural Study on the Development of the Knee Joint in the Human Fetus (인태아 슬관절 발육에 관한 전자현미경적 연구)

  • Kim, Baik-Yoon;Joo, Ki-Jung;Nam, Kwang-Il;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.213-232
    • /
    • 2000
  • The development of the knee joint was studied by electron microscopy in human fetuses ranging from 20 mm to 260 mm crown-rump length ($7\sim30$ weeks of gestational age). The appearance of the primordium of the meniscus and cruciate ligament was conspicuous as the mesenchymal cells , preceeding that of joint space at 30 mm fetus. The primitive joint cavity was first seen in the interzone from the 40 mm fetus and its intermediate layer proceeded developing as a narrow cleft which was closely incorporated with two chondrogenic layers. Poorly differentiated mesenchymal cells of the meniscus at 40 mm fetus containing predominantly free ribosomes differentiated into fibroblasts at 60 mm fetus. By 100 mm fetus, the fibroblast in inner zone of the meniscus presented as oval profiles with a short cell processes, whereas middle and peripheral zones presented as elongated cells. Differentiation of the synovial membrane coincided with clarification of the joint cavity When dilatation of the synovial cavity occurred, the two types of synovial cells were identified at 60 mm fetus. By 100 mm fetus a majority of the intimal cells were B-type. B-type cells were clearly distinguishable from A-type cells by their content of extensive rough endoplasmic reticula and well developed Golgi complexes. In contrast, A-type cells had numerous filopodia, pinocytotic vesicles, lysosomes and large vacuoles. At 260 mm fetus the B-type cells were also a majority of intimal cells. At 260 mm fetus the inner zone of the meniscus was filled with parallel oriented fascicles of collagenous fibers and oval fibroblasts. The middle zone was constituted of parallel and radially arranged fibers and fibroblasts. The outer zone was populated by elongated fibroblasts encircled by crossed collagenous fibers with the blood vessels. At 30 mm fetus the fibroblasts of the cruciate ligament contained rough endoplasmic reticula and mitochondria. Collagen fibrils were noted within narrow cytoplasmic processes which were continued with the extracellular space. Collagen fibrils of ligament were filled in the bulk of extracellular space at 100 mm fetus. By $150\sim260mm$ fetus, the cruciate ligaments were constituted of longitudinally oriented bundle of collagen fibrils with irregular rows of round cells between.

  • PDF