• 제목/요약/키워드: extracellular material

검색결과 115건 처리시간 0.027초

Metabolic Flux Analysis of Beijerinckia indica for PS-7 Production

  • Wu Jian-Rong;Son Jeong Hwa;Seo Hyo-Jin;Kim Ki-Hong;Nam Yoon-Kwon;Lee Jin-Woo;Kim Sung-Koo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.91-98
    • /
    • 2005
  • In order to investigate central metabolic changes in Beijerinckia indica, cells were grown on different carbon sources and intracellular flux distributions were studied under varying concentrations of nitrogen. Metabolic fluxes were estimated by combining material balances with extracellular substrate uptake rate, biomass formation rate, and exopolysaccharide (EPS) accumulation rate. Thirty-one metabolic reactions and 30 intracellular metabolites were considered for the flux analysis. The results revealed that most of the carbon source was directed into the Entner-Doudoroff pathway, followed by the recycling of triose-3-phosphate back to Hexose­6-phosphate. The pentose phosphate pathway was operated at a minimal level to supply the precursors for biomass formation. The different metabolic behaviors under varying nitrogen concentrations were observed with flux analysis.

고분자 생체재료와 줄기세포를 이용한 조직공학과 재생의학의 최신 동향 (Recent Applications of Polymeric Biomaterials and Stem Cells in Tissue Engineering and Regenerative Medicine)

  • 이상진
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.113-128
    • /
    • 2014
  • Tissue engineering and regenerative medicine strategies could offer new hope for patients with serious tissue injuries or end-stage organ failure. Scientists are now applying the principles of cell transplantation, material science, and engineering to create biological substitutes that can restore and maintain normal function in diseased or injured tissues/organs. Specifically, creation of engineered tissue construct requires a polymeric biomaterial scaffold that serves as a cell carrier, which would provide structural support until native tissue forms in vivo. Even though the requirements for scaffolds may be different depending on the target applications, a general function of scaffolds that need to be fulfilled is biodegradability, biological and mechanical properties, and temporal structural integrity. The scaffold's internal architecture should also enhance the permeability of nutrients and neovascularization. In addition, the stem cell field is advancing, and new discoveries in tissue engineering and regenerative medicine will lead to new therapeutic strategies. Although use of stem cells is still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This review discusses these tissue engineering and regenerative medicine strategies for various tissues and organs.

Controlled Release of Cyclosporin A from Liposomes-in-Microspheres as an Oral Delivery System

  • Park, Hee-Jung;Lee, Chang-Moon;Lee, Yong-Bok;Lee, Ki-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.526-529
    • /
    • 2006
  • The aim of this study was to prepare cyclosporin A-loaded liposome (CyA-Lip) as an oral delivery carrier, with their encapsulation into microspheres based on alginate or extracellular polysaccharide (EPS) p-m10356. The main advantage of liposomes in the microspheres (LIMs) is to improve the restricted drug release property from liposomes and their stability in the stomach environment. Alginate microspheres containing CyA-Lip were prepared with a spray nozzle; CyA-Liploaded EPS microspheres were also prepared using a w/o emulsion method. The shape of the LIMs was spherical and uniform, and the particle size of the alginate-LIMs ranged from 5 to $10\;{\mu}m$, and that of the EPS-LIMs was about $100\;{\mu}m$. In a release test, release rate of CyA in simulated intestinal fluid (SIF) from the LIMs was significantly enhanced compared to that in simulated gastric fluid (SGF). In addition, the CyA release rates were slower from formulations containing the liposomes compared to the microspheres without the liposome. Therefore, alginate-and EPS-LIMs have the potential for the controlled release of CyA and as an oral delivery system.

생물학적 회분식 인 제거 공정에서 pH의 영향과 그래뉼 생성 (Influence of Different Operational pH Conditions and Granulation on Enhanced Biological Sequencing Batch Phosphorus Removal)

  • 안조환
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.754-759
    • /
    • 2011
  • A sequencing batch reactor (SBR) was operated under different pH conditions to better understand the influence of pH to granulation in enhanced biological phosphorus removal systems. Granules from the SBR were also investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Considerable decreases in the amount of phosphorus released per substrate provided under anaerobic conditions and the content of biomass polyphosphate under aerobic conditions were observed when pH was changed from 7.5 to 7.0, followed by 6.5. Aerobic granulation was also observed at pH 7.0. A number of bacteria with the typical morphological traits of tetrad-forming organisms (TFOs) were observed at pH 7.0, including large members of cluster. Filamentous bacteria were also there in large numbers. The occurrence and growth of granules were further enhanced at pH 6.5. A SEM analysis showed that the aerobic granules had a compact microbial structure with shaperical shape and morphologically consisted of aggregates of small coccoid bacteria and filamentous bacteria encapsulated by extracellular polymeric substance. The main material ions identified by EDX moreover revealed that the structural materials for polyphosphate in the granules include phosphorus, potassium and calcium. Therefore, these results strongly suggested that PAOs are a dominant population in the microbial community of the aerobic granules.

Anti-inflammatory Effects of Scrophularia Koraiensis Nakai via NF-κB and MAPK Signaling Pathways in LPS-induced Macrophages

  • Da-Yoon Lee;So-Yeon Han;Hye-Jeong Park;Seo-Yoon Park;Jun-Hwan Jeong;Yoon-Jae Kwon;Tae-Won Jang;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.107-107
    • /
    • 2022
  • Scrophularia koraiensis Nakai is widely used to remedy fever, edema, and neuritis. S. koraiensis has harpagoside and angoroside C, these compounds have been reported to alleviate inflammation, rheumatic diseases, and analgesic stimulation. We evaluated the anti-inflammatory effects of the ethanol extract of S. koraiensis (SKE) in lipopolysaccharides (LPS)-induced macrophages. At cellular levels, SKE decreased the production of nitric oxide (NO), the expression of inducible nitric oxide synthase (iNOS), and cytokines (IL-1b, TNF-a, and IL-6) under the LPS stimulation. SKE inhibited the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and its inhibitor (IκB-α). In addition, SKE suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in the mitogen-activated protein kinase (MAPK) pathway. In conclusion, SKE could be considered a potential resource for attenuating inflammation response and it may be utilized in the material for cosmetics, food additives, and tea.

  • PDF

Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application

  • Hyunseok Kong;Sang Bum Kim
    • IMMUNE NETWORK
    • /
    • 제22권5호
    • /
    • pp.38.1-38.24
    • /
    • 2022
  • Exosomes, which are well-known nanoscale extracellular vesicles, are multifunctional biomaterials derived from endosomes and perform various functions. The exosome is a critical material in cell-cell communication. In addition, it regulates the pathophysiological conditions of the tumor microenvironment in particular. In the tumor microenvironment, exosomes play a controversial role in supporting or killing cancer by conveying biomaterials derived from parent cells. Innate immunity is a crucial component of the host defense mechanism, as it prevents foreign substances, such as viruses and other microbes and tumorigenesis from invading the body. Early in the tumorigenesis process, the innate immunity explicitly recognizes the tumor via Ags and educates the adaptive immunity to eliminate it. Recent studies have revealed that exosomes regulate immunity in the tumor microenvironment. Tumor-derived exosomes regulate immunity against tumor progression and metastasis. Furthermore, tumor-derived exosomes regulate polarization, differentiation, proliferation, and activation of innate immune cells. Exosomes produced from innate immune cells can inhibit or support tumor progression and metastasis via immune cell activation and direct cancer inhibition. In this study, we investigated current knowledge regarding the communication between tumor-derived exosomes and innate immune cell-derived exosomes (from macrophages, dendritic cells, NK cells, and neutrophils) in the tumor microenvironment. In addition, we discussed the potential development of exosomal immunotherapy using native or engineered exosomes against cancer.

Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity

  • Kim, Byung-Hyuk;Kim, Dong-Ho;Choi, Jung-Woon;Kang, Zion;Cho, Dae-Hyun;Kim, Ji-Young;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1547-1554
    • /
    • 2015
  • The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

Poly-N-acetyl-glucosamine이 당뇨병 쥐에서 창상치료에 미치는 영향 (Effects of Poly-N-acetyl Glucosamine(pGlcNAc) Patch on Wound Healing in db/db Mouse)

  • 양호직;윤치선
    • Archives of Plastic Surgery
    • /
    • 제35권2호
    • /
    • pp.121-126
    • /
    • 2008
  • Purpose: Poly-N-acetyl glucosamine(PGlcNAc) nanofiber-based materials, produced by a marine microalga, have been characterized as effective hemostatic and angiogenic agents. The similarity between PGlcNAc patch and the natural extracellular matrix allows it to support new healthy tissue growth in an injured area and to encourage fluid absorption. In this study, we hypothesized that a poly-N-acetyl glucosamine fiber patch(PGlcNAc patch) may enhance wound healing in the db/db mouse. Methods: PGlcNAc patches were applied on one square centimeter, full-thickness, skin wounds in the db/db mouse model. Wounds(n=15 per group) were dressed with a PGlcNAc nanofiber patch for 1 hour(1 h), 24 hours(24 h) or left untreated(NT). After the application time, patches were removed and wounds were allowed to heal spontaneously. The rate of wound closure was evaluated by digital analysis of unclosed wound area in course of time. At day 10, wounds(n=7 per group) were harvested and quantified with immunohistochemical markers of proliferation(Ki-67) and vascularization (platelet endothelial cell adhesion molecule, PECAM-1). Results: Wounds dressed with PGlcNAc patches for 1 hour closed faster than control wounds, reaching 90% closure in 16.6 days, nine days faster than untreated wounds. Granulation tissue showed higher levels of proliferation and vascularization following 1 h treatment than the 24 h and NT groups. In addition to its hemostatic properties, the PGlcNAc material also appears to accelerate wound closure in healing-impaired genetically diabetic mice. Conclusion: This material, with its combination of hemostatic and wound healing properties, has the potential to be effective agent for the treatment of complicated wounds.

펨토초 레이저 절삭 공정을 이용한 생분해성 나노섬유 표면 미세 패터닝 공정 (Micropatterning on Biodegradable Nanofiber Scaffolds by Femtosecond Laser Ablation Process)

  • 정용우;전인동;김유찬;석현광;정석;전호정
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.555-559
    • /
    • 2016
  • A biodegradable nanofiber scaffolds using electrospining provide fibrous guidance cues for controlling cell fate that mimic the native extracellular matrix (ECM). It can create a pattern using conventional electrospining method, but has a difficulty to generate one or more pattern structures. Femtosecond(fs) laser ablation has much interested in patterning on biomaterials in order to distinguish the fundamental or systemic interaction between cell and material surface. The ablated materials with a short pulse duration using femtosecond laser that allows for precise removal of materials without transition of the inherent material properties. In this study, linear grooves and circular craters were fabricated on electrospun nanofiber scaffolds (poly-L-lactide(PLLA)) by femtosecond laser patterning processes. As parametric studies, pulse energy and beam spot size were varied to determine the effects of the laser pulse on groove size. We confirmed controlling pulse energy to $5{\mu}J-20{\mu}J$ and variation of lens maginfication of 2X, 5X, 10X, 20X created grooves of width to approximately $5{\mu}m-50{\mu}m$. Our results demonstrate that femtosecond laser processing is an effective means for flexibly structuring the surface of electrospun PLLA nanofibers.

Effect of red ginseng NaturalGEL on skin aging

  • Kim, Ye Hyang;Park, Hye Rim;Cha, So Yoon;Lee, So Hun;Jo, Jung Wung;Go, Jung Nam;Lee, Kang Hyuk;Lee, Su Yeon;Shin, Song Seok
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.115-122
    • /
    • 2020
  • Background: In aged skin, degradation of collagen fibers, which occupy the majority of the extracellular matrix in the dermis, and changes of aquaporin 3 (AQP3) and skin constituents, such as hyaluronic acid and ceramide, cause wrinkles and decrease skin moisturization to contribute to dryness and lower elasticity skin. Red ginseng (RG) is used as a cosmetic and food material and is known to protect from UVB-induced cell death, increase skin hydration, prevent wrinkles, and have an antioxidative effect. But, in general, RG used as a material is the soluble liquid portion in the solvent, and the part that is not soluble in the solvent is discarded. Thus, we made the whole RG into microgranulation and dispersed in water to produce gel form for using entire RG, and it was named red ginseng NaturalGEL (RG NGEL). Methods: RG NGEL was investigated for matrix metalloproteinases inhibitory activity, induction of Type I collagen, AQP3, hyaluronan synthetase 2, serine palmitoyl transferase, ceramide synthase 3, and filaggrin expression and compared with RG water extract. Results: RG NGEL reduced the levels of UV-induced matrix metalloproteinases and increased Type I collagen in human fibroblast cells and upregulated AQP3, hyaluronan synthetase 2, serine palmitoyl transferase, ceramide synthase 3, and filaggrin expressions in human keratinocytes compared with RG water extract. Conclusion: RG NGEL has the potential as an effective reagent for antiaging cosmetics to improve wrinkle formation and skin hydration.