DOI QR코드

DOI QR Code

Recent Applications of Polymeric Biomaterials and Stem Cells in Tissue Engineering and Regenerative Medicine

고분자 생체재료와 줄기세포를 이용한 조직공학과 재생의학의 최신 동향

  • Lee, Sang Jin (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine) ;
  • Yoo, James J. (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine) ;
  • Atala, Anthony (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine)
  • Received : 2013.12.16
  • Accepted : 2014.01.03
  • Published : 2014.03.25

Abstract

Tissue engineering and regenerative medicine strategies could offer new hope for patients with serious tissue injuries or end-stage organ failure. Scientists are now applying the principles of cell transplantation, material science, and engineering to create biological substitutes that can restore and maintain normal function in diseased or injured tissues/organs. Specifically, creation of engineered tissue construct requires a polymeric biomaterial scaffold that serves as a cell carrier, which would provide structural support until native tissue forms in vivo. Even though the requirements for scaffolds may be different depending on the target applications, a general function of scaffolds that need to be fulfilled is biodegradability, biological and mechanical properties, and temporal structural integrity. The scaffold's internal architecture should also enhance the permeability of nutrients and neovascularization. In addition, the stem cell field is advancing, and new discoveries in tissue engineering and regenerative medicine will lead to new therapeutic strategies. Although use of stem cells is still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This review discusses these tissue engineering and regenerative medicine strategies for various tissues and organs.

Keywords

References

  1. A. Atala, Curr. Opin. Biotechnol., 20, 575 (2009). https://doi.org/10.1016/j.copbio.2009.10.003
  2. A. Atala, Urol. Clin. North Am., 36, 199 (2009). https://doi.org/10.1016/j.ucl.2009.02.009
  3. A. Atala, Fertil. Steril., 98, 21 (2012). https://doi.org/10.1016/j.fertnstert.2012.05.038
  4. A. Atala, F. K. Kasper, and A. G. Mikos, Sci. Transl. Med., 4, 160rv12 (2012).
  5. F. Chen, J. J. Yoo, and A. Atala, Urology, 54, 407 (1999). https://doi.org/10.1016/S0090-4295(99)00179-X
  6. S. Y. Chun, G. J. Lim, T. G. Kwon, E. K. Kwak, B. W. Kim, A. Atala, and J. J. Yoo, Biomaterials, 28, 4251 (2007). https://doi.org/10.1016/j.biomaterials.2007.05.020
  7. J. J. Yoo, J. Meng, F. Oberpenning, and A. Atala, Urology, 51, 221 (1998). https://doi.org/10.1016/S0090-4295(97)00644-4
  8. D. Eberli, R. Susaeta, J. J. Yoo, and A. Atala, Int. J. Impot. Res., 19, 602 (2007). https://doi.org/10.1038/sj.ijir.3901587
  9. B. S. Kim, A. Atala, and J. J. Yoo, World. J. Urol., 26, 307 (2008). https://doi.org/10.1007/s00345-008-0300-1
  10. S. Joo, I. K. Ko, A. Atala, J. J. Yoo, and S. J. Lee, Arch. Pharm. Res., 35, 271 (2012). https://doi.org/10.1007/s12272-012-0207-7
  11. J. E. Bergsma, F. R. Rozema, R. R. Bos, G. Boering, W. C. de Bruijn, and A. J. Pennings, Biomaterials, 16, 267 (1995). https://doi.org/10.1016/0142-9612(95)93253-A
  12. R. O. Hynes, Cell, 69, 11 (1992). https://doi.org/10.1016/0092-8674(92)90115-S
  13. T. F. Deuel, Annu. Rev. Cell. Biol., 3, 443 (1987). https://doi.org/10.1146/annurev.cb.03.110187.002303
  14. B. S. Kim and D. J. Mooney, Trends. Biotechnol., 16, 224 (1998). https://doi.org/10.1016/S0167-7799(98)01191-3
  15. J. L. Pariente, B. S. Kim, and A. Atala, J. Urol., 167, 1867 (2002). https://doi.org/10.1016/S0022-5347(05)65251-2
  16. C. H. Lee, A. Singla, and Y. Lee, Int. J. Pharm., 221, 1 (2001). https://doi.org/10.1016/S0378-5173(01)00691-3
  17. M. G. Patino, M. E. Neiders, S. Andreana, B. Noble, and R. E. Cohen, J. Oral. Implantol., 28, 220 (2002). https://doi.org/10.1563/1548-1336(2002)028<0220:CAAIMI>2.3.CO;2
  18. J. L. C. van Susante, J. Pieper, P. Buma, T. H. van Kuppevelt, H. van Beuningen, P. M. van Der Kraan, J. H. Veerkamp, W. B. van den Berg, and R. P. H. Veth, Biomaterials, 22, 2359 (2001). https://doi.org/10.1016/S0142-9612(00)00423-3
  19. M. M. Murray, K. Rice, R. J. Wright, and M. Spector, J. Orthop. Res., 21, 238 (2003). https://doi.org/10.1016/S0736-0266(02)00142-0
  20. T. Coviello, P. Matricardi, C. Marianecci, and F. Alhaique, J. Control. Release, 119, 5 (2007). https://doi.org/10.1016/j.jconrel.2007.01.004
  21. A. P. Spicer and J. Y. Tien, Birth Defects Res. C, 72, 89 (2004). https://doi.org/10.1002/bdrc.20006
  22. D. E. Beck, Z. Cohen, J. W. Fleshman, H. S. Kaufman, H. van Goor, and B. G. Wolff, Dis. Colon. Rectum., 46, 1310 (2003). https://doi.org/10.1007/s10350-004-6739-2
  23. M. P. Diamond, Fertil. Steril., 66, 904 (1996).
  24. F. Kemper, U. Gebhardt, T. Meng, and C. Murray, Curr. Med. Res. Opin., 21, 1261 (2005). https://doi.org/10.1185/030079905X56501
  25. D. D. Waddell, D. C. Bricker, and G.-F. Hylan, J. Surg. Orthop. Adv., 15, 53 (2006).
  26. D. D. Waddell and D. C. Bricker, J. Knee Surg., 19, 19 (2006).
  27. E. Khor and L. Y. Lim, Biomaterials, 24, 2339 (2003). https://doi.org/10.1016/S0142-9612(03)00026-7
  28. C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, and T. Cheng, J. Surg. Res., 133, 185 (2006). https://doi.org/10.1016/j.jss.2005.12.013
  29. H. H. Tonnesen and J. Karlsen, Drug. Dev. Ind. Pharm., 28, 621 (2002). https://doi.org/10.1081/DDC-120003853
  30. A. Gutowska, B. Jeong, and M. Jasionowski, Anat. Rec., 263, 342 (2001). https://doi.org/10.1002/ar.1115
  31. H. Zimmermann, D. Zimmermann, R. Reuss, P. J. Feilien, B. Manz, A. Katsen, M. Weber, F. R. Ihmig, F. Ehrhart, P. Gessner, M. Behringer, A. Steinbach, L. H. Wegner, V. L. Sukhorukov, J. A. Vasquez, S. Schneider, M. M. Weber, F. Volke, R. Wolf, and U. Zimmermann, J. Mater. Sci. Mater. Med., 16, 491 (2005). https://doi.org/10.1007/s10856-005-0523-2
  32. P. L. Jones, C. Schmidhauser, and M. J. Bissell, Crit. Rev. Eukaryot. Gene Expr., 3, 137 (1993).
  33. R. L. Juliano and S. Haskill, J. Cell. Biol., 120, 577 (1993). https://doi.org/10.1083/jcb.120.3.577
  34. L. Reid, B. Morrow, P. Jubinsky, E. Schwartz, and Z. Gatmaitan, Ann. N. Y. Acad. Sci., 372, 354 (1981). https://doi.org/10.1111/j.1749-6632.1981.tb15488.x
  35. H. Birkedal-Hansen, Curr. Opin. Cell Biol., 7, 728 (1995). https://doi.org/10.1016/0955-0674(95)80116-2
  36. M. P. Lutolf, Nat. Biotechnol., 23, 47 (2005). https://doi.org/10.1038/nbt1055
  37. J. Hodde, Tissue Eng., 8, 295 (2002). https://doi.org/10.1089/107632702753725058
  38. H. C. Ott, T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor, Nat. Med., 14, 213 (2008). https://doi.org/10.1038/nm1684
  39. D. Eberli, A. Atala, and J. J. Yoo, J. Mater. Sci. Mater. Med., 22, 741 (2010).
  40. P. M. Baptista, M. M. Siddigui, G. Lozier, S. R. Rodriguez, A. Atala, and S. Soker, Hepatology, 53, 604 (2010).
  41. H. C. Ott, B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J. P. Vacanti, Nat. Med., 16, 927 (2010). https://doi.org/10.1038/nm.2193
  42. D. C. Sullivan, S. H. Mirmalek-Sani, D. B. Deegan, P. M. Baptista, T. Aboushwareb, A. Atala, and J. J. Yoo, Biomaterials, 33, 7756 (2012). https://doi.org/10.1016/j.biomaterials.2012.07.023
  43. G. E. Sandusky, G. C. Lantz, and S. F. Badylak, J. Surg. Res., 58, 415 (1995). https://doi.org/10.1006/jsre.1995.1064
  44. J. A. DeQuach, V. Mezzano, A. Miglani, S. Lange, G. M. Keller, F. Sheikh, and K. L. Christman, PLoS One, 5, e13039 (2010). https://doi.org/10.1371/journal.pone.0013039
  45. M. M. Stern, R. L. Myers, N. Hammam, K. A. Stern, D. Eberli, S. B. Kritchevsky, S. Soker, and M. van Dyke, Biomaterials, 30, 2393 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.069
  46. T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, Biomaterials, 27, 3675 (2006).
  47. M. C. Serrano, R. Pagani, M. Vallet-Regi, J. Pena, A. Ramila, I. Izquierdo, and M. T. Portoles, Biomaterials, 25, 5603 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.037
  48. P. A. Gunatillake and R. Adhikari, Eur. Cell Mater., 5, 1 (2003).
  49. I. Y. Galaev and B. Mattiasson, Trends Biotechnol., 17, 335 (1999). https://doi.org/10.1016/S0167-7799(99)01345-1
  50. A. S. Hoffman, P. S. Stayton, V. Bulmus, G. Chen, J. Chen, C. Cheung, A. Chilkoti, Z. Ding, L. Dong, R. Fong, C. A. Lackey, C. J. Long, M. Miura, J. E. Morris, N. Murthy, Y. Nabeshima, T. G. Park, O. W. Press, T. Shimoboji, S. Shoemaker, H. J. Yang, N. Monji, R. C. Nowinski, C. A. Cole, J. H. Priest, J. M. Harris, K. Nagamae, T. Nishino, and T. Miyata, J. Biomed. Mater. Res., 52, 577 (2000). https://doi.org/10.1002/1097-4636(20001215)52:4<577::AID-JBM1>3.0.CO;2-5
  51. B. G. Cilento, M. R. Freeman, F. X. Schneck, A. B. Retik, and A. Atala, J. Urol., 152, 665 (1994).
  52. M. Liebert, A. Hubbel, M. Chung, G. Wedemeyer, M. I. Lomax, A. Hegeman, T. Y. Yuan, M. Brozovich, M. J. Wheelock, and H. B. Grossman, Differentiation, 61, 177 (1997). https://doi.org/10.1046/j.1432-0436.1997.6130177.x
  53. J. A. Puthenveettil, M. S. Burger, and C. A. Reznikoff, Adv. Exp. Med. Biol., 462, 83 (1999). https://doi.org/10.1007/978-1-4615-4737-2_7
  54. L. Z. Solomon, A. M. Jennings, P. Sharpe, A. J. Cooper, and P. S. Malone, J. Lab. Clin. Med., 132, 279 (1998). https://doi.org/10.1016/S0022-2143(98)90040-3
  55. A. H. Brivanlou, F. H. Gage, R. Jaenisch, T. Jessell, D. Melton, and J. Rossant, Science, 300, 913 (2003). https://doi.org/10.1126/science.1082940
  56. M. Richards, C. Y. Fong, W. K. Chan, P. C. Wong, and A. Bongso, Nat. Biotechnol., 20, 933 (2002). https://doi.org/10.1038/nbt726
  57. M. Amit, V. Margulets, H. Segev, K. Shariki, I. Laevsky, R. Coleman, and J. Itskovitz-Eldor, Biol. Reprod., 68, 2150 (2003).
  58. T. E. Ludwig, V. Bergendahl, M. E. Levenstein, J. Yu, M. D. Probasco, and J. A. Thomson, Nat. Methods, 3, 637 (2006). https://doi.org/10.1038/nmeth902
  59. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones, Science, 282, 1145 (1998). https://doi.org/10.1126/science.282.5391.1145
  60. B. E. Reubinoff, P. Itsykson, T. Turetsky, M. F. Pera, E. Reinhartz, A. Itzik, and T. Ben-Hur, Nat. Biotechnol., 19, 1134 (2001). https://doi.org/10.1038/nbt1201-1134
  61. M. Schuldiner, R. Eiges, A. Eden, O. Yanuka, J. Itskovitz-Eldor, R. S. Goldstein, and N. Benvenisty, Brain Res., 913, 201 (2001). https://doi.org/10.1016/S0006-8993(01)02776-7
  62. C. L. Mummery, J. Zhang, E. S. Ng, D. A. Elliott, A. G. Elefanty, and T. J. Kamp, Circ. Res., 111, 344 (2012). https://doi.org/10.1161/CIRCRESAHA.110.227512
  63. C. Cheung and S. Sinha, J. Mol. Cell Cardiol., 51, 651 (2011). https://doi.org/10.1016/j.yjmcc.2011.07.014
  64. D. S. Kaufman, E. T. Hanson, R. L. Lewis, R. Auerbach, and J. A. Thomsons, Proc. Natl. Acad. Sci., 98, 10716 (2001). https://doi.org/10.1073/pnas.191362598
  65. I. Kehat, D. Kenyagin-Karsenti, M. Snir, H. Segev, M. Amit, A. Gepstein, E. Livne, O. Binah, J. Iskovitz-Eldor, and L. Gepstein, J. Clin. Invest., 108, 407 (2001). https://doi.org/10.1172/JCI200112131
  66. S. Levenberg, J. S. Golub, M. Amit, J. Itskovitz-Eldor, and R. Langer, Proc. Natl. Acad. Sci., 99, 4391 (2002). https://doi.org/10.1073/pnas.032074999
  67. S. Assady, G. Maor, M. Amit, J. Itskovitz-Eldor, K. L. Skorecki, and M. Tzukerman, Diabetes, 50, 1691 (2001). https://doi.org/10.2337/diabetes.50.8.1691
  68. K. H. Lie, B. E. Tuch, and K. S. Sidhu, Pancreas, 41, 54 (2012). https://doi.org/10.1097/MPA.0b013e31822362e4
  69. J. Itskovitz-Eldor, M. Schuldiner, D. Karsenti, A. Eden, O. Yanuka, M. Amit, H. Soreq, and N. Benvenisty, Mol. Med., 6, 88 (2000).
  70. K. Takahashi and S. Yamanaka, Cell, 126, 663 (2006). https://doi.org/10.1016/j.cell.2006.07.024
  71. M. Wernig, A. Meissner, R. Foreman, T. Brambrink, M. Ku, K. Hochedlinger, B. E. Bernstein, and R. Jaenisch, Nature, 448, 318 (2007). https://doi.org/10.1038/nature05944
  72. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, Cell, 131, 861 (2007). https://doi.org/10.1016/j.cell.2007.11.019
  73. J. Yu, M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson, Science, 318, 1917 (2007). https://doi.org/10.1126/science.1151526
  74. K. Okita, T. Ichisaka, and S. Yamanaka, Nature, 448, 313 (2007). https://doi.org/10.1038/nature05934
  75. A. Meissner, M. Wernig, and R. Jaenisch, Nat. Biotechnol., 25, 1177 (2007). https://doi.org/10.1038/nbt1335
  76. R. Langer and J. P. Vacanti, Science, 260, 920 (1993). https://doi.org/10.1126/science.8493529
  77. A. Atala, Rejuvenation Res., 7, 15 (2004). https://doi.org/10.1089/154916804323105053
  78. S. J. Lee, M. Van Dyke, A. Atala, and J. J. Yoo, Rejuvenation Res., 11, 747 (2008). https://doi.org/10.1089/rej.2008.0691
  79. C. Jopling, S. Boue, and J. C. Izpisua Belmonte, Nat. Rev. Mol. Cell. Biol., 12, 79 (2011). https://doi.org/10.1038/nrm3043
  80. G. Bartsch, J. J. Yoo, P. De Coppi, M. M. Siddiqui, G. Schuch, H. G. Pohl, J. Fuhr, L. Perin, S. Soker, and A. Atala, Stem. Cells Dev., 14, 337 (2005). https://doi.org/10.1089/scd.2005.14.337
  81. P. De Coppi, G. Bartsch, Jr., M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala, Nat. Biotechnol., 25, 100 (2007). https://doi.org/10.1038/nbt1274
  82. G. J. Pan, Z. Y. Chang, H. R. Scholer, and D. Pei, Cell Res., 12 321 (2002). https://doi.org/10.1038/sj.cr.7290134
  83. E. C. Moorefield, E. E. McKee, L. Solchaga, G. Orlando, J. J. Yoo, S. Walker, M. E. Furth, and C. E. Bishop, PLoS One, 6, e26535 (2011). https://doi.org/10.1371/journal.pone.0026535
  84. A. D. Bach, J. P. Beier, J. Stern-Staeter, and R. E. Horch, J. Cell Mol. Med., 8, 413 (2004). https://doi.org/10.1111/j.1582-4934.2004.tb00466.x
  85. C. A. DiEdwardo, P. Petrosko, T. O. Acarturk, P. A. DiMilla, W. A. LaFramboise, and P. C. Johnson, Clin. Plast. Surg., 26, 647 (1999).
  86. G. Cossu and S. Biressi, Semin. Cell Dev. Biol., 16, 623 (2005). https://doi.org/10.1016/j.semcdb.2005.07.003
  87. B. Cao, B. M. Deasy, J. Pollett, and J. Huard, Phys. Med. Rehabil. Clin. N Am., 16, 889 (2005). https://doi.org/10.1016/j.pmr.2005.08.020
  88. A. Wernig, M. Zweyer, and A. Irintchev, J. Physiol., 522, 233 (2000).
  89. M. Cesar, S. Roussanne-Domergue, B. Coulet, S. Gay, J. P. Micallef, M. Chammas, Y. Reyne, and F. Bacou, Muscle Nerve, 37, 219 (2008). https://doi.org/10.1002/mus.20918
  90. J. F. DeRosimo, C. H. Washabaugh, M. P. Ontell, M. J. Daood, J. F. Watchko, S. C. Watkins, B. T. Ameredes, and M. Ontell, Cell Transplant., 9, 369 (2000).
  91. F. C. Payumo, H. D. Kim, M. A. Sherling, L. P. Smith, C. Powell, X. Wang, H. S. Keeping, R. F. Valentini, and H. H. Vandenburgh, Clin. Orthop. Relat. Res., 403, s228 (2002). https://doi.org/10.1097/00003086-200210001-00027
  92. C. A. Powell, B. L. Smiley, J. Mills, and H. H. Vandenburgh, Am. J. Physiol. Cell Physiol., 283, C1557 (2002). https://doi.org/10.1152/ajpcell.00595.2001
  93. J. S. Choi, S. J. Lee, G. J. Christ, A. Atala, and J. J. Yoo, Biomaterials, 29, 2899 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.031
  94. M. J. Wakelam, Biochem. J., 228, 1 (1985).
  95. W. Zhao, Y. M. Ju, G. Christ, A. Atala, J. J. Yoo, and S. J. Lee, Biomaterials, 34, 8235 (2013). https://doi.org/10.1016/j.biomaterials.2013.07.057
  96. M. Koning, M. C. Harmsen, M. J. van Luyn, and P. M. Werker, J. Tissue. Eng. Regen. Med., 3, 407 (2009). https://doi.org/10.1002/term.190
  97. P. J. Kingham and G. Terenghi, J. Anat., 209, 511 (2006). https://doi.org/10.1111/j.1469-7580.2006.00623.x
  98. W. Bian and N. Bursac, FASEB J., 26, 955 (2012). https://doi.org/10.1096/fj.11-187575
  99. T. T. Kummer, T. Misgeld, and J. R. Sanes, Curr. Opin. Neurobiol., 16, 74 (2006). https://doi.org/10.1016/j.conb.2005.12.003
  100. H. Wu, W. C. Xiong, and L. Mei, Development, 137, 1017 (2010). https://doi.org/10.1242/dev.038711
  101. A. D. Bach, J. P. Beier, and G. B. Stark, Cell Tissue Res., 314, 263 (2003). https://doi.org/10.1007/s00441-003-0757-6
  102. C. F. Bentzinger, P. Barzaghi, S. Lin, and M. A. Ruegg, FASEB J., 19, 934 (2005). https://doi.org/10.1096/fj.04-3376com
  103. D. J. Glass, D. C. Bowen, T. N. Stitt, C. Radziejewski, J. Bruno T. E. Ryan, D. R. Gies, S. Shah, K. Mattsson, S. J. Burden, P. S. DiStefano, D. M. Valenzuela, T. M. DeChiara, and G. D. Yancopulos, Cell, 85, 513 (1996). https://doi.org/10.1016/S0092-8674(00)81252-0
  104. S. Lin, L. Landmann, M. A. Ruegg, and H. R. Brenners, J. Neurosci., 28, 3333 (2008). https://doi.org/10.1523/JNEUROSCI.5590-07.2008
  105. T. M. DeChiara, D. C. Bowen, D. M. Valenzuela, M. V. Simmons, W. T. Poueymirou, S. Thomas, E. Kinetz, D. L. Compton, E. Rojas, J. S. Park, C. Smith, P. S. DiStefano, D. J. Glass, S. J. Burden, and G. D. Yancopoulos, Cell, 85, 501 (1996). https://doi.org/10.1016/S0092-8674(00)81251-9
  106. I. K. Ko, B. K. Lee, S. J. Lee, K.-E. Andersson, A. Atala, and J. J. Yoo, Biomaterials, 34, 3246 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.029
  107. R. Ross, Nature, 362, 801 (1993). https://doi.org/10.1038/362801a0
  108. J. Bujan, N. Garcia-Honduvilla, and J. M. Bellon, Biotechnol. Appl. Biochem., 39, 17 (2004). https://doi.org/10.1042/BA20030111
  109. E. R. Edelman, Circ. Res., 85, 1115 (1999). https://doi.org/10.1161/01.RES.85.12.1115
  110. Z. Gong and L. E. Niklason, Trends Cardiovasc. Med., 16, 153 (2006). https://doi.org/10.1016/j.tcm.2006.02.006
  111. S. E. Greenwald and C. L. Berry, J. Pathol., 190, 292 (2000). https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<292::AID-PATH528>3.0.CO;2-S
  112. T. W. Swain, 3rd, K. D. Calligaro, and M. D. Dougherty, Vasc. Endovascular. Surg., 38, 75 (2004). https://doi.org/10.1177/153857440403800110
  113. Y. M. Ju, J. S. Choi, A. Atala, J. J Yoo, and S. J. Lee, Biomaterials, 31, 4313 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.002
  114. G. E. Amiel, M. Komura, O. Shapira, J. J. Yoo, S. Yazdani, J. Berry, S. Kaushal, J. Bischoff, A. Atala, and S. Soker, Tissue Eng., 12, 2355 (2006). https://doi.org/10.1089/ten.2006.12.2355
  115. S. Kaushal, G. E. Amiel, K. J. Guleserian, O. M. Shapira, T. Perry, F. W. Sutherland, E. Rabkin, A. M. Moran, F. J. Schoen, A. Atala, S. Soker, J. Bischoff, and J. E. Mayer, Jr., Nat. Med., 7, 1035 (2001). https://doi.org/10.1038/nm0901-1035
  116. S. Drilling, J. Gaumer, and J. Lannutti, J. Biomed. Mater. Res. A, 88, 923 (2009).
  117. S. J. Lee, G. J. Lim, J. W. Lee, A. Atala, and J. J. Yoo, Biomaterials, 27, 3466 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.059
  118. S. J. Lee, J. J. Yoo, G. J. Lim, A. Atala, and J. Stitzel, J. Biomed. Mater. Res. A, 83, 999 (2007).
  119. J. Stitzel, J. Liu, S. J. Lee, M. Komura, J. Berry, S. Soker, G. Lim, M. Van Dyke, R. Czerw, J. J. Yoo, and A. Atala, Biomaterials, 27, 1088 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.048
  120. M. S. Baguneid, A. M. Seifalian, H. J. Salacinski, D. Murray, G Hamilton, and M. G. Walker, Br. J. Surg., 93, 282 (2006). https://doi.org/10.1002/bjs.5256
  121. B. W. Tillman, S. K. Yazdani, S. J. Lee, R. L. Geary, A. Atala, and J. J. Yoo, Biomaterials, 30, 583 (2009). https://doi.org/10.1016/j.biomaterials.2008.10.006
  122. A. J. Salgado, O. P. Coutinho, and R. L. Reis, Macromol. Biosci., 4, 743 (2004). https://doi.org/10.1002/mabi.200400026
  123. N. Zaidi and A. J. Nixon, Ann. N. Y. Acad. Sci., 1117, 62 (2007). https://doi.org/10.1196/annals.1402.074
  124. M. T. Rodrigues, B. K. Lee, S. J. Lee, M. E. Gomes, R. L. Reis, A. Atala, and J. J. Yoo, Biomaterials, 33, 6069 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.016
  125. M. T. Rodrigues, S. J. Lee, M. E. Gomes, R. L. Reis, A. Atala, and J. J. Yoo, Tissue Eng. Part A, 18, 2518 (2012). https://doi.org/10.1089/ten.tea.2011.0672
  126. M. T. Rodrigues, S. J. Lee, M. E. Gomes, R. L. Reis, A. Atala, and J. J. Yoo, Acta Biomaterialia, 8, 2795 (2012). https://doi.org/10.1016/j.actbio.2012.04.013
  127. X. Luo, J. Yang, Q. Yang, and X. Wang, J. Craniofac. Surg., 23, 654 (2012). https://doi.org/10.1097/SCS.0b013e31824db808
  128. A. Yamada, K. Imai, T. Nomachi, T. Fujimoto, and K. Morimoto, Burns, 33, 112 (2007). https://doi.org/10.1016/j.burns.2006.04.011
  129. Q. Zhang, Y. Quan, Y. Su, L. Shi, Y. Xie, and X. Liu, Ann. Plast. Surg., 64, 428 (2010). https://doi.org/10.1097/SAP.0b013e3181b0bb7e
  130. R. C. Tanzer, Plast. Reconstr. Surg., 23, 1 (1959). https://doi.org/10.1097/00006534-195901000-00001
  131. S. Suutarla, J. Rautio, and T. Klockars, Facial Plast. Surg., 25, 164 (2009). https://doi.org/10.1055/s-0029-1239445
  132. G. H. Wilkes, Facial Plast. Surg., 25, 158 (2009). https://doi.org/10.1055/s-0029-1239452
  133. R. Siegert and R. Magritz, Facial Plast. Surg., 25, 169 (2009). https://doi.org/10.1055/s-0029-1239449
  134. R. Siegert, H. Weerda, and R. Magritz, Facial Plast. Surg., 25, 149 (2009). https://doi.org/10.1055/s-0029-1239451
  135. K. Sevin, I. Askar, A. Saray, and E. Yormuk, Br. J. Oral Maxillofac. Surg., 38, 44 (2000). https://doi.org/10.1054/bjom.1998.0038
  136. J. D. Williams, T. Romo, 3rd, A. P. Sclafani, and H. Cho, Arch. Otolaryngol. Head Neck Surg., 123, 578 (1997). https://doi.org/10.1001/archotol.1997.01900060020003
  137. R. Cenzi, A. Farina, L. Zuccarino, and F. Carinci, J. Craniofac. Surg., 16, 526 (2005). https://doi.org/10.1097/01.scs.0000168761.46700.dc
  138. A. Sterodimas, J. de Faria, and W. E. Correa, J. Plast. Reconstr. Aesthet. Surg., 62, 447 (2009). https://doi.org/10.1016/j.bjps.2008.11.046
  139. S. J. Lee, C. Broda, A. Atala, and J. J. Yoo, Biomacromolecules, 12, 306 (2011). https://doi.org/10.1021/bm100856g
  140. H. Auchincloss and J. V. Bonventre, Nat. Biotechnol., 20, 665 (2002). https://doi.org/10.1038/nbt0702-665
  141. G. E. Amiel, J. J. Yoo, and A. Atala, World J. Urol., 18, 71 (2000). https://doi.org/10.1007/s003450050013
  142. P. Aebischer, T. K. Ip, G. Panol, and P. M. Galletti, Life Support Syst., 5, 159 (1987).
  143. H. D. Humes, D. A. Buffington, S. M. MacKay, A. J. Funke, and W. F. Weitzel, Nat. Biotechnol., 17, 451 (1999). https://doi.org/10.1038/8626
  144. T. Joki, M. Machluf, A. Atala, J. Zhu, N. T. Seyfried, I. F. Dunn, T. Abe, R. S. Carroll, and P. M. Black, Nat. Biotechnol., 19, 35 (2001). https://doi.org/10.1038/83481
  145. R. P. Lanza, J. L. Hayes, and W. L. Chick, Nat. Biotechnol., 14, 1107 (1996). https://doi.org/10.1038/nbt0996-1107
  146. R. P. Lanza, H. Y. Chung, J. J. Yoo, P. J. Wettstein, C. Blackwell, N. Borson, E. Hofmeister, G. Schuch, S. Soker, C. T. Moraes, M. D. West, and A. Atala, Nat. Biotechnol., 20, 689 (2002). https://doi.org/10.1038/nbt703
  147. M. A. Bazeed, J. W. Thuroff, R. A. Schmidt, and E. A. Tanagho, Urology, 21, 53 (1983). https://doi.org/10.1016/0090-4295(83)90123-1
  148. L. Olsen, S. Bowald, C. Busch, J. Carlsten, and I. Eriksson, Scand J. Urol. Nephrol., 26, 323 (1992). https://doi.org/10.3109/00365599209181220
  149. A. Atala, J. P. Vacanti, C. A. Peters, J. Mandell, A. B. Retik, and M. R. Freeman, J. Urol., 148, 658 (1992).
  150. K. D. Sievert, M. E. Bakircioglu, L. Nunes, R. Tu, R. Dahiya, and E. A. Tanagho, J. Urol., 163, 1958 (2000). https://doi.org/10.1016/S0022-5347(05)67610-0
  151. A. Atala, L. Guzman, and A. B. Retik, J. Urol., 162, 1148 (1999). https://doi.org/10.1016/S0022-5347(01)68105-9
  152. R. E. De Filippo, J. J. Yoo, and A. Atala, J. Urol., 168, 1789 (2002). https://doi.org/10.1016/S0022-5347(05)64414-X
  153. P. J. le Roux, J. Urol., 173, 140 (2005). https://doi.org/10.1097/01.ju.0000146554.79487.7f
  154. A. Raya-Rivera, D. R. Esquiliano, J. J. Yoo, E. Lopez-Bayghen, S. Soker, and A. Atala, Lancet, 377, 1175 (2011). https://doi.org/10.1016/S0140-6736(10)62354-9
  155. F. Oberpenning, J. Meng, J. J. Yoo, and A. Atala, Nat. Biotechnol., 17, 149 (1999). https://doi.org/10.1038/6146
  156. A. Atala, S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik, Lancet, 367, 1241 (2006). https://doi.org/10.1016/S0140-6736(06)68438-9
  157. J. Folkman and M. Hochberg, J. Exp. Med., 138, 745 (1973). https://doi.org/10.1084/jem.138.4.745
  158. M. Nomi, A. Atala, P. D. Coppi, and S. Soker, Mol. Aspects. Med., 23, 463 (2002). https://doi.org/10.1016/S0098-2997(02)00008-0
  159. P. De Coppi, D. Delo, L. Farrugia, K. Udompanyanan, J. J. Yoo, M. Nomi, A. Atala, and S. Soker, Tissue Eng., 11, 1034 (2005). https://doi.org/10.1089/ten.2005.11.1034
  160. G. Schuch, M. Machluf, G. Jr. Bartsch, M. Nomi, H. Richard, A. Atala, and S. Soker, Blood, 100, 4622 (2002). https://doi.org/10.1182/blood.V100.13.4622
  161. A. B. Ennett, D. Kaigler, and D. J. Mooney, J. Biomed. Mater. Res. A, 79, 176 (2006).
  162. D. Kaigler, Z. Wang, K. Horger, D. J. Mooney, and P. H. Krebsbach, J. Bone Miner. Res., 21, 735 (2006). https://doi.org/10.1359/jbmr.060120
  163. C. Borselli, C. A. Cezar, D. Shvartsman, H. H. Vandenburgh, and D. J. Mooney, Biomaterials, 32, 8905 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.019
  164. S. Levenberg, J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. van Blitterswijk, R. C. Mulligan, P. A. D'Amore, and R. Langer, Nat. Biotechnol., 23, 879 (2005). https://doi.org/10.1038/nbt1109
  165. J. J. Moon, J. E. Saik, R. A. Poche, J. E. Leslie-Barbick, S. H. Lee, A. A. Smith, M. E. Dickinson, and J. L. West, Biomaterials, 31, 3840 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.104

Cited by

  1. Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors vol.10s1, pp.1177-2719, 2015, https://doi.org/10.4137/BMI.S20057
  2. Advanced biomaterials and their potential applications in the treatment of periodontal disease pp.1549-7801, 2016, https://doi.org/10.3109/07388551.2015.1035693
  3. Chitosan: Application in tissue engineering and skin grafting vol.24, pp.8, 2017, https://doi.org/10.1007/s10965-017-1286-4
  4. Substance-P and transforming growth factor-β in chitosan microparticle-pluronic hydrogel accelerates regenerative wound repair of skin injury by local ionizing radiation pp.19326254, 2018, https://doi.org/10.1002/term.2445