• 제목/요약/키워드: externally bonded

검색결과 117건 처리시간 0.023초

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

FRP로 보강된 RC보의 휨거동 예측을 위한 해석모델 (Analysis Model for Predicting the Flexural Behavior of RC Beam Strengthened with FRP)

  • 홍기남;이봉노;한상훈
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.62-69
    • /
    • 2011
  • This paper presents a new simple two-dimensional frame finite element able to accurately estimate the load-carrying capacity of reinforced concrete beams flexurally strengthened externally bonded fiber reinforced polymer (FRP) strips and plates. The proposed analysis model considers distributed plasticity with layer-discretization of the cross-sections and the bond-slip behavior of epoxy layer. The proposed model is used to predict the load-carrying capacity and the applied load-midspan deflection response of RC beams subjected to bending loading. Numerical simulations and experimental measurements are compared based on numerous tests available in the literature and published by different authors. The numerically simulated response agree remarkably well with the corresponding experimental results. Thus, the proposed model is suitable for efficient and accurate modeling and analysis of flexural strengthening of RC beams with externally bonded FRP sheets/plates and for practical use in design-oriented parametric studies.

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Behavioral trends of shear strengthened reinforced concrete beams with externally bonded fiber-reinforced polymer

  • Barakat, Samer;Al-Toubat, Salah;Leblouba, Moussa;Burai, Eman Al
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.579-589
    • /
    • 2019
  • Numerous experimental studies have been conducted on reinforced concrete (RC) beams strengthened in shear with externally bonded fiber reinforced polymer (EBFRP). The objectives of this work are to study the behavioral trends of shear strengthened EBFRP RC beams after updating the existing database. The previously published databases have been updated, enriched and cross checked for completeness, redundancy and consistency. The updated database now contains data on 698 EBFRP beams and covers the time span from 1992 to 2018. The collected database then refined applying certain filters and used to investigate and capture better interactions among various influencing parameters affecting the shear strength of EBFRP beams. These parameters include the type and properties of FRP, fiber orientation as well as the strengthening scheme, the shear and the longitudinal steel reinforcement ratios, the shear span ratio, and the geometry of the member. The refined database is used to test the prediction accuracy of the existing design models. Considerable scatters are found in the results of all tested prediction models and in many occasions the predictions are unsafe. To better understand the shear behavior of the EBFRP RC beams and then enhance the prediction models, it was concluded that focused experimental programs should be carried out.

Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates

  • Abu-Obeidah, Adi S.;Abdalla, Jamal A.;Hawileh, Rami A.
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.249-262
    • /
    • 2019
  • In this study, high strength aluminum alloys (AA) plates are proposed as a new construction material for strengthening reinforced concrete (RC) beams. The purpose of this investigation is to evaluate AA plate's suitability as externally bonded reinforcing (EBR) materials for retrofitting shear deficient beams. A total of twenty RC beams designed to fail in shear were strengthened with different spacing and orientations. The specimens were loaded with four-points loading till failure. The considered outcome parameters included load carrying capacity, deflection, strain in plates, and failure modes. The results of all tested beams showed an increase up to 37% in the load carrying capacity and also an increase in deflection compared to the control un-strengthened beams. This demonstrated the potential of adopting AA plates as EBR material. Finally, the shear contribution from the AA plates was predicted using the models available in the ACI440-08, TR55 and FIB14 design code for fiber reinforced polymer (FRP) plates. The predicted results were compared to experimental testing data with the ratio of the experimentally measured ultimate load to predicted load, range on the average, between 93% and 97%.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

RC 부재의 휨 보강을 위한 외부 비부착형 탄소섬유판 포스트텐션 시스템 (Post-tensioning System with Externally Unbonded CFRP Strips for Strengthening RC Members)

  • 유영찬;최기선;김긍환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권6호
    • /
    • pp.147-154
    • /
    • 2008
  • 본 연구에서는 외부 비부착형 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨거동을 분석하기 위한 실험연구를 수행하였다. 실험체는 프리스트레스 양 및 정착장치의 형상을 변수로 총 10개로 제작되었다. 또한 프리스트레스의 도입에 따른 구조성능 비교를 위하여 기준실험체와 단순부착 실험체를 함께 제작하였다. 실험결과, 단순 부착 탄소섬유판으로 보강된 부재는 조기 박리에 의해 탄소섬유판 인장강도의 50% 이하에서 최종파괴되었다. 그러나, 프리스트레스를 도입하여 보강한 실험체는 모두 탄소섬유판의 파단하중까지 도달하였다. 또한 스터드형 정착장치를 적용한 실험체들의 보강성능은 매립형 정착장치를 적용한 실험체와 동등한 보강성능을 나타내었다.

Flexural behaviour of CFST members strengthened using CFRP composites

  • Sundarraja, M.C.;Prabhu, G. Ganesh
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.623-643
    • /
    • 2013
  • Concrete filled steel tubular members (CFST) become a popular choice for modern building construction due to their numerous structural benefits and at the same time aging of those structures and member deterioration are often reported. Therefore, actions like implement of new materials and strengthening techniques become essential to combat this problem. The application of carbon fibre reinforced polymer (CFRP) with concrete structures has been widely reported whereas researches related to strengthening of steel structures using fibre reinforced polymer (FRP) have been limited. The main objective of this study is to experimentally investigate the suitability of CFRP to strengthening of CFST members under flexure. There were three wrapping schemes such as Full wrapping at the bottom (fibre bonded throughout entire length of beam), U-wrapping (fibre bonded at the bottom throughout entire length and extended upto neutral axis) and Partial wrapping (fibre bonded in between loading points at the bottom) introduced. Beams strengthened by U-wrapping exhibited more enhancements in moment carrying capacity and stiffness compared to the beams strengthened by other wrapping schemes. The beams of partial wrapping exhibited delamination of fibre and were failed even before attaining the ultimate load of control beam. The test results showed that the presence of CFRP in the outer limits was significantly enhanced the moment carrying capacity and stiffness of the beam. Also, a non linear finite element model was developed using the software ANSYS 12.0 to validate the analytical results such as load-deformation and the corresponding failure modes.

Bond strength characterization and estimation of steel fibre reinforced polymer - concrete composites

  • Jahangir, Hashem;Eidgahee, Danial Rezazadeh;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.803-816
    • /
    • 2022
  • Composite materials are effective in forming externally bonded reinforcements which find applications related to existing structures repair, attributed to their high strength-to-weight ratio and ease of installation. Among various composites, fibre reinforced polymers (FRP) have somewhat been largely accepted as a commonly utilized composite for such purposes. It is only recently that steel fibres have been considered as additional members of the FRP fibre family, intuitively termed as steel reinforced polymer (SRP). Owing to its low cost and permissibility of fibre bending at sharp corners, SRP is rapidly becoming a viable contender to other FRP systems. This paper investigates the bond behaviour of SRP-concrete joints with different bonded lengths (50, 75, 100, 150 and 300 mm) and widths (15, 30, 40, 50, and 75 mm) using single-lap shear tests. The experimental specimens contain SRP strips with a fixed density of steel fibres (0.472 cords/mm) bonded to the face of concrete prisms. The load responses were obtained and compared in terms of corresponding load and slip boundaries of the constant region and the peak loads. The failure modes of SRP composites are discussed, and the range of effective bonded length is evaluated herein. In the end, a new analytical model was proposed to estimate the SRP-concrete bond strength using a genetic algorithm, which outperforms 22 existing FRP-concrete bond strength models.

Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams

  • Gamino, Andre Luis;Bittencourt, Tulio Nogueira;de Oliveira e Sousa, Jose Luiz Antunes
    • Computers and Concrete
    • /
    • 제6권3호
    • /
    • pp.187-202
    • /
    • 2009
  • This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.