DOI QR코드

DOI QR Code

Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams

  • Received : 2008.08.18
  • Accepted : 2009.04.17
  • Published : 2009.06.25

Abstract

This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.

Keywords

References

  1. Araujo, A.C.N. (2002), Experimental study of RC beams strengthened with CFRP's composites, MSc Thesis (in Portuguese), Pontifícia Universidade Catolica do Rio de Janeiro, Rio de Janeiro.
  2. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Englewood Cliffs.
  3. Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures, John Wiley & Sons.
  4. Dahl, K.K.B. (1992), A failure criterion for normal and high strength concrete, Technical University of Denmark, Lyngby.
  5. Elwi, A.E. and Hrudey, T.M. (1989), "Finite element model for curved embedded reinforcement", J. Eng. Mech., 115(4), 740-754. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(740)
  6. Gamino, A.L. (2007), Physical and computational modeling of RC structures strengthened with FRP, PhD Thesis (in portuguese), Escola Politecnica, Universidade de Sao Paulo, Sao Paulo.
  7. Gamino, A.L., Bittencourt, T.N. and Sousa, J.L.A.O. (2007), "Numerical modeling of classic concrete beam tests", Struct. J., IBRACON 3(2), 201-229.
  8. Gamino, A.L. and Bittencourt, T.N. (2007a), "Reinforced Concrete Beams Strengthened with CFRP: Experimental, Analytical and Numerical Approaches", Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures - FRPRCS-8, Patras, 1, 130-131.
  9. Gamino, A.L. and Bittencourt, T.N. (2007b), "Numerical Evaluation of Plastic Rotation Capacity in Reinforced Concrete Beams", Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures - FraMCoS 6, Catania, 2, 665-670.
  10. Gamino, A.L. and Bittencourt, T.N. (2004), High Performance Finite Elements and Their Applications. Tsinghua University Press, 2, 25.
  11. Gamino, A.L., Sousa, J.L.A.O. and Bittencourt, T.N. (2009), "Application of carbon fiber reinforced polymer in strengthening to shear R/C T Beams", Proccedings of the 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures - FRPRCS-9, Sydney (in Press).
  12. Hartl, H. (2002), Development of a continuum-mechanics-based for 3D finite element analysis of reinforced concrete structures and application to problems of soil-structure interation, PhD Thesis, Technische Universitat Graz, Austria.
  13. Homayoun, H.A. and Mitchell, D. (1996), "Analysis of bond stress distributions in pullout specimens", J. Struct. Eng., 122(3), 255-261. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(255)
  14. Jirasek, M. and Zimmermann, T. (1998), "Analysis of rotating crack model", J. Eng. Mech. ASCE, 74, 842-851.
  15. Juvandes, L.F.P. (1999), Reforco e reabilitacao de estruturas de betao usando materiais compositos de CFRP. PhD Thesis (in portuguese), Faculdade de Engenharia, Universidade do Porto, Porto.
  16. Kardestuncer, H. and Norrie, D.H. (1987), Finite Element Handbook, McGraw-Hill.
  17. Martha, L.F., Menezes, I., Lages, E.N., Parente Jr. E., and Pitangueira, R. (1996), "An oop class organization for materially nonlinear finite element analysis", Proceedings of Join Conference of Italian Group of Computational Mechanics and Ibero-Latin American Association of Computational Methods in Engineering, Padova, 229-232.
  18. Mehlhorn, G. and Keuser, M. (1986), Finite element analysis of reinforced concrete structures, Prentice Hall, Englewood Cliffs.
  19. Miranda, A.C.O., Meggiolaro, M.A., Castro, J.T.P., Martha, L.F., and Bittencourt, T.N. (2003), "Fatigue Life and Crack Path Predictions in Generic 2D Structural Components", Eng. Fract. Mech., 70(10), 1259-1279. https://doi.org/10.1016/S0013-7944(02)00099-1
  20. Ottosen, N.S. (1977), "A failure criterion for concrete", J. Eng. Mech. Divi., 103(4), 527-535.
  21. Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity - Theory and Practice, Pineridge Press.

Cited by

  1. Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips vol.8, pp.2, 2011, https://doi.org/10.12989/cac.2011.8.2.193
  2. Estruturas de concreto reforçadas com PRFC Parte I: análise dos modelos de flexão vol.2, pp.4, 2009, https://doi.org/10.1590/S1983-41952009000400003
  3. 2D evaluation of crack openings using smeared and embedded crack models vol.7, pp.6, 2010, https://doi.org/10.12989/cac.2010.7.6.483
  4. Efficacy of CFRP configurations for shear of RC beams: experimental and NLFE vol.39, pp.3, 2011, https://doi.org/10.12989/sem.2011.39.3.361
  5. Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.703
  6. Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets vol.25, pp.5, 2020, https://doi.org/10.12989/cac.2020.25.5.383
  7. Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites vol.27, pp.2, 2009, https://doi.org/10.12989/cac.2021.27.2.131