Browse > Article
http://dx.doi.org/10.12989/acc.2019.7.4.249

Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates  

Abu-Obeidah, Adi S. (Department of Civil Engineering, Rutgers, The State University of New Jersey)
Abdalla, Jamal A. (Department of Civil Engineering and Materials Science and Engineering Research Institute (MSERI), American University of Sharjah)
Hawileh, Rami A. (Department of Civil Engineering and Materials Science and Engineering Research Institute (MSERI), American University of Sharjah)
Publication Information
Advances in concrete construction / v.7, no.4, 2019 , pp. 249-262 More about this Journal
Abstract
In this study, high strength aluminum alloys (AA) plates are proposed as a new construction material for strengthening reinforced concrete (RC) beams. The purpose of this investigation is to evaluate AA plate's suitability as externally bonded reinforcing (EBR) materials for retrofitting shear deficient beams. A total of twenty RC beams designed to fail in shear were strengthened with different spacing and orientations. The specimens were loaded with four-points loading till failure. The considered outcome parameters included load carrying capacity, deflection, strain in plates, and failure modes. The results of all tested beams showed an increase up to 37% in the load carrying capacity and also an increase in deflection compared to the control un-strengthened beams. This demonstrated the potential of adopting AA plates as EBR material. Finally, the shear contribution from the AA plates was predicted using the models available in the ACI440-08, TR55 and FIB14 design code for fiber reinforced polymer (FRP) plates. The predicted results were compared to experimental testing data with the ratio of the experimentally measured ultimate load to predicted load, range on the average, between 93% and 97%.
Keywords
aluminum alloy; shear capacity; externally bonded plates; FRP; reinforced concrete;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 The Concrete Society (2000), "Design guidance for strengthening concrete structures using fibre composites materials", Technical Report no. 55, 2nd Edition, Report of a Concrete Society Committee, Berkshire, UK.
2 Triantafillou, T.C. (1998), "Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites", ACI Struct. J., 95, 107-115.
3 AALCO METALS LIMITED (Accessed 15 January 2017) http://www.aalco.co.uk/products/aluminium.aspx
4 Abdalla, J.A., Abu-Obeidah, A. and Hawileh, R.A. (2011), "Behaviour of shear deficient reinforced concrete beams with externally bonded aluminum alloy plates", The 2011 World Congress on Advances in Structural Engineering and Mechanics, September.
5 Abdalla, J.A., Abu-Obeidah, A.S., Hawileh, R.A. and Rasheed, H.A. (2016), "Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: An experimental study", Constr. Build. Mater., 128, 24-37. https://doi.org/10.1016/j.conbuildmat.2016.10.071.   DOI
6 Abdalla, J.A., Hraib, F.H., Hawileh, R.A. and Mirghani, A.M. (2017), "Experimental investigation of bond-slip behavior of aluminum plates adhesively bonded to concrete", J. Adhes. Sci. Technol., 31(1), 82-99. https://doi.org/10.1080/01694243.2016.1204741.   DOI
7 Xing, G. and Ozbulut, O.E. (2016), "Flexural performance of concrete beams reinforced with aluminum alloy bars", Eng. Struct., 126, 53-65. https://doi.org/10.1016/j.engstruct.2016.07.032.   DOI
8 Triantafillou, T.C. and Antonopoulos, C.P. (2000), "Design of concrete flexural members strengthened in shear with FRP", J. Compos. Constr., 4(4), 198-205. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:4(198).   DOI
9 Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with postcompressed plates", Adv. Concrete Constr., 5(5), 539-561. http://dx.doi.org/10.12989/acc.2013.1.2.163.   DOI
10 Wu, G., Zeng, Y.H., Wu, Z.S. and Feng, W.Q. (2012), "Experimental study on the flexural behavior of RC beams strengthened with steel-wire continuous basalt fiber composite plates", J. Compos. Constr., 17(2), 208-216. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000328.   DOI
11 Zhang, Z. and Hsu, C.T.T. (2005), "Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates", J. Compos. Constr., 9(2), 158-169. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158).   DOI
12 Ahmad, H., Hameed, R., Riaz, M.R. and Gillani, A.A. (2018), "Strengthening of concrete damaged by mechanical loading and elevated temperature", Adv. Concrete Constr., 6(6), 645-658. : https://doi.org/10.12989/acc.2018.6.6.645.   DOI
13 Abdel-Kareem, A.H. (2014), "Shear strengthening of reinforced concrete beams with rectangular web openings by FRP composites", Adv. Concrete Constr., 2(4), 281-300. https://doi.org/10.12989/acc.2014.2.4.281.   DOI
14 Abu-Obeidah, A., Hawileh, R. and Abdalla, J.A. (2012), "Finite element modeling of shear deficient beams bonded with aluminum plates", Proceedings of the Eleventh International Conference on Computational Structures Technology, Dubrovnik, Croatia.
15 Abu-Obeidah, A., Hawileh, R.A. and Abdalla, J.A. (2015), "Finite element analysis of strengthened RC beams in shear with aluminum plates", Comput. Struct., 147, 36-46. https://doi.org/10.1016/j.compstruc.2014.10.009.   DOI
16 Abu-Obeidah, A.S. (2012), "Behaviour of shear deficient reinforced concrete beams with externally bonded aluminum plates", Master Thesis, American University of Sharjah, Sharjah, UAE.
17 Adhikary, B.B. and Mutsuyoshi, H. (2006), "Shear strengthening of RC beams with web-bonded continuous steel plates", Constr. Build. Mater., 20(5), 296-307. https://doi.org/10.1016/j.conbuildmat.2005.01.026.   DOI
18 Akroush, N., Almahallawi, T., Seif, M. and Sayed-Ahmed, E.Y. (2017), "CFRP shear strengthening of reinforced concrete beams in zones of combined shear and normal stresses", Compos. Struct., 162, 47-53. https://doi.org/10.1016/j.compstruct.2016.11.075.   DOI
19 Al-Sulaimani, G.J., Sharif, A., Basunbul, I.A., Baluch, M.H. and Ghaleb, B.N. (1994), "Shear repair for reinforced concrete by fiberglass plate bonding", Struct. J., 91(4), 458-464.
20 Ali, A., Abdalla, J., Hawileh, R. and Galal, K. (2014), "CFRP mechanical anchorage for externally strengthened RC beams under flexure", Phys. Procedia, 55, 10-16. https://doi.org/10.1016/j.phpro.2014.07.002.   DOI
21 Baghi, H. and Barros, J.A. (2016), "Shear strengthening of reinforced concrete T-beams with hybridcomposite plate", J. Compos. Constr., 20(6), 04016036. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000693.   DOI
22 Ali, N., Mohamad, N., Jayaprakash, J., Tee, K.F. and Mendis, P. (2016), "Shear strengthening and shear repair of 2-Span continuous RC beams with CFRP strips", J. Compos. Constr., 21(3), 04016099. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000756.   DOI
23 American Concrete Institute. Committee 440 (2002), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures: ACI 440.2 R-02, American Concrete Institute.
24 ASTM International. Committee B07 on Light Metals and Alloys (2015), Standard Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-alloy Products (metric), ASTM International.
25 Aykac, S., Kalkan, I., Aykac, B., Karahan, S. and Kayar, S. (2012), "Strengthening and repair of reinforced concrete beams using external steel plates", J. Struct. Eng., 139(6), 929-939. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000714.   DOI
26 Azam, R. and Soudki, K. (2014), "FRCM strengthening of shearcritical RC beams", J. Compos. Constr., 18(5), 04014012. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000464.   DOI
27 Carolin, A. and Taljsten, B. (2005), "Experimental study of strengthening for increased shear bearing capacity", J. Compos. Constr., 9(6), 488-496. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(488).   DOI
28 Carolin, A. and Taljsten, B. (2005), "Theoretical study of strengthening for increased shear bearing capacity", J. Compos. Constr., 9(6), 497-506. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(497).   DOI
29 Chaallal, O., Nollet, M.J. and Perraton, D. (1998), "Shear strengthening of RC beams by externally bonded side CFRP strips", J. Compos. Constr., 2(2), 111-113. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(111).   DOI
30 Chajes, M.J., Januszka, T.F., Mertz, D.R., Thomson, T.A. and Finch, W.W. (1995), "Shear strengthening of reinforced concrete beams using externally applied composite fabrics", Struct. J., 92(3), 295-303.
31 Chajes, M.J., Januszka, T.F., Mertz, D.R., Thomson, T.A. and Finch, W.W. (1995), "Shear strengthening of reinforced concrete beams using externally applied composite fabrics", Struct. J., 92(3), 295-303.
32 Chakrabortty, A. and Khennane, A. (2014), "Failure mechanisms of hybrid FRP-concrete beams with external filament-wound wrapping", Adv. Concrete Constr., 2(1), 57-75. http://dx.doi.org/10.12989/acc.2014.2.1.057.   DOI
33 Chen, G.M., Li, S.W., Fernando, D., Liu, P.C. and Chen, J.F. (2017), "Full-range FRP failure behaviour in RC beams shearstrengthened with FRP wraps", Int. J. Solid. Struct., 125, 1-21. https://doi.org/10.1016/j.ijsolstr.2017.07.019.   DOI
34 Chen, J.F. and Teng, J.G. (2003), "Shear capacity of fiberreinforced polymer-strengthened reinforced concrete beams: Fiber reinforced polymer rupture", J. Struct. Eng., 129(5), 615-625. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(615).   DOI
35 Comite Europeen de Normalisation (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, Eurocode 2, EN 1992-1-1: 2004: E.
36 Dhahir, M.K. (2018), "Strut and tie modeling of deep beams shear strengthened with FRP laminates", Compos. Struct., 193, 247-259. https://doi.org/10.1016/j.compstruct.2018.03.073.   DOI
37 Du Beton, F.I. (2001), "Externally bonded FRP reinforcement for RC structures", Bulletin, 14, 138.
38 Esfandiari, S. and Esfandiari, J. (2016), "Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading", Adv. Concrete Constr., 4(4), 319-332. https://doi.org/10.12989/acc.2016.4.4.319.   DOI
39 Dursun, T. and Soutis, C. (2014), "Recent developments in advanced aircraft aluminium alloys", Mater. Des., 56, 862-871. https://doi.org/10.1016/j.matdes.2013.12.002.   DOI
40 Editor Report (1965), "The aluminum and concrete controversy. Publication #C650369", Concrete Construction Magazine, The Aberdeen Group.
41 Foster, R.M., Brindley, M., Lees, J.M., Ibell, T.J., Morley, C.T., Darby, A.P. and Evernden, M.C. (2016), "Experimental investigation of reinforced concrete T-beams strengthened in shear with externally bonded CFRP sheets", J. Compos. Constr., 21(2), 04016086. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000743.   DOI
42 Hawileh, R., Abdalla, J., Nawaz, W., Alzeer, A., Muwafi, R. and Faridi, A. (2014), "Strengthening reinforced concrete beams in flexure using hardwire steel fiber sheets", Proceedings of CICE, Vancouver, Canada, August.
43 Hawileh, R.A., Nawaz, W. and Abdalla, J.A. (2018), "Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets", Constr. Build. Mater., 172, 562-573. https://doi.org/10.1016/j.conbuildmat.2018.03.225.   DOI
44 Hawileh, R.A., Nawaz, W., Abdalla, J.A. and Saqan, E.I. (2015), "Effect of flexural CFRP sheets on shear resistance of reinforced concrete beams", Compos. Struct., 122, 468-476. https://doi.org/10.1016/j.compstruct.2014.12.010.   DOI
45 Hawileh, R.A., Rasheed, H.A., Abdalla, J.A. and Al-Tamimi, A.K. (2014), "Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems", Mater. Des., 53, 972-982. https://doi.org/10.1016/j.matdes.2013.07.087.   DOI
46 Jumaat, M.Z., Rahman, M.A., Alam, M.A. and Rahman, M.M. (2011), "Premature failures in plate bonded strengthened RC beams with an emphasis on premature shear: A review", Int. J. Phys. Sci., 6(2), 156-168. https://doi.org/10.5897/IJPS10.369.
47 Hosseinpour, F. and Abbasnia, R. (2014), "Experimental investigation of the stress-strain behavior of FRP confined concrete prisms", Adv. Concrete Constr., 2(3), 177-192. http://dx.doi.org/10.12989/acc.2014.2.3.177.   DOI
48 Hosseinpour, F. and Abdelnabya A.E. (2015), "Statistical evaluation of the monotonic models for FRP confined concrete prisms", Adv. Concrete Constr., 3(3), 161-185. https://doi.org/10.12989/acc.2015.3.3.161.   DOI
49 Islam, M.R., Mansur, M.A. and Maalej, M. (2005), "Shear strengthening of RC deep beams using externally bonded FRP systems", Cement Concrete Compos., 27(3), 413-420. https://doi.org/10.1016/j.cemconcomp.2004.04.002.   DOI
50 Jana, D. and Tepke, D.G. (2010), "Corrosion of aluminum metal in concrete-a case study", The 32nd International Conference on Cement Microscopy, ICMA, March.
51 Khalifa, A. and Nanni, A. (2000), "Improving shear capacity of existing RC T-section beams using CFRP composites", Cement Concrete Compos., 22(3), 165-174. https://doi.org/10.1016/S0958-9465(99)00051-7.   DOI
52 Khalifa, A., Gold, W.J., Nanni, A. and MI, A.A. (1998), "Contribution of externally bonded FRP to shear capacity of RC flexural members", J. Compos. Constr., 2(4), 195-202. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(195).   DOI
53 Kissell, J.R. and Ferry, R.L. (2002), A Guide to Their Specifications and Design, John Wiley & Sons, INC.
54 Linberg, R.I. (1960), Aluminum in Concrete, Publication #C600008, Concrete Construction Magazine, The Aberdeen Group.
55 McGeary, F.L. (1966), "Performance of aluminium in concrete containing chlorides", J. Proc., 63(2), 247-266.
56 Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539.   DOI
57 Razavi, S.V., Jumaat, M.Z., EI-Shafie, A.H. and Ronagh, H.R. (2015), "Load-deflection analysis prediction of CFRP strengthened RC slab using RNN", Adv. Concrete Constr., 3(2), 91-102. https://doi.org/10.12989/acc.2015.3.2.091.   DOI
58 Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concrete Constr., 2(2), 91-108. http://dx.doi.org/10.12989/acc.2014.2.2.091.   DOI
59 Mirghani, A.M., Abdalla, J.A. and Hawileh, R.A. (2017), "Modeling and simulation of bond-slip behavior of Aluminum Alloy plates adhesively bonded to concrete", Modeling, Simulation, and Applied Optimization (ICMSAO), 2017 7th International Conference on, 1-5.
60 Rasheed, H.A., Abdalla, J., Hawileh, R. and Al-Tamimi, A.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with externally bonded Aluminum Alloy plates", Eng. Struct., 147, 473-485. https://doi.org/10.1016/j.engstruct.2017.05.067.   DOI
61 Sikadur-30(R), https://www.sika-distributor.com/pdf/sikadur30/pdscpd-Sikadur30-us.pdf
62 Sumathi, A. and Arun Vignesh, S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. https://doi.org/10.12989/acc.2017.5.6.625.   DOI
63 Szumigala, M. and Polus, L. (2015), "Applications of aluminium and concrete composite structures", Procedia Eng., 108, 544-549. https://doi.org/10.1016/j.proeng.2015.06.176.   DOI
64 Taljsten, B. and Elfgren, L. (2000), "Strengthening concrete beams for shear using CFRP-materials: evaluation of different application methods", Compos. Part B: Eng., 31(2), 87-96. https://doi.org/10.1016/S1359-8368(99)00077-3.   DOI