• Title/Summary/Keyword: external steel

Search Result 631, Processing Time 0.025 seconds

Determination of the Initial Tendon Force in Two-span Continuous Steel-Concrete Composite Beam Strengthened with External Tendons (외부 긴장재로 보강된 2경간 연속 강합성보의 초기 긴장력 결정)

  • Choi, Dong Ho;Yoo, Dong Min;Jung, Jae Dong;Kim, Eun Ji
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.145-154
    • /
    • 2006
  • This paper presents a method to enhance the load carrying capacity for a two-span continuous steel-concrete composite beam strengthened with external tendons. The tendon is placed at the bottom of steel beam where the positive bending moment occurs. This results in the reduction of the negative bending moment as well as the positive bending moment. This paper describes the procedure to determine the number of tendon and the initial tendon force for the target rating factor in the rating factor equation. An example beam is given to demonstrate the proposed procedure, and it validity is confirmed.

Elasto-Plastic Analysis for Flexural Behavior of Externally Prestressed Composite Bridges (외부 프리스트레스트 강합성 교량의 탄소성 휨 거동해석)

  • Chung, Seung In;Ryu, Hyung Keun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • Recent application researches on external pre-stressing method of composite structures have been conducted to explore its advantages. An external pre-stress could improve mechanical behavior and maintenance, and is economically efficient. In this paper, the Incremental Deformation Method (IDM) was proposed to analyze the elasto-plastic flexural behavior of externally pre-stressed composite bridge with consideration for the material's nonlinearity. This method was verified with experimental results.

Capacity Evaluation of Steel Damper Attached to Outside of Frame (골조 외부에 부착한 강재댐퍼의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.382-388
    • /
    • 2017
  • In this study, a basic study was carried out on the external strengthening method of public buildings. A steel damper is installed outside the specimen with a rocking wall and connected to the frame. Two specimens were fabricated, and the non-reinforced specimens utilized the existing results. As a result of evaluating the envelope curve, strength, stiffness and energy dissipation capacity, it was evaluated that the strength enhancement of the RW_P specimen externally reinforced plate damper was evaluated to be excellent. In addition, RW_S specimens with external S type damper shows a gentle envelop curve after maximum load, and it can be confirmed that the damper properly dissipates the seismic energy.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.

A Galvanic Sensor for Monitoring the External and Internal Corrosion Damage of Buried Pipelines

  • Choi, Yoon-Seok;Kim, Jung-Gu;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.178-190
    • /
    • 2005
  • In order to develop a new corrosion sensor for detecting and monitoring the external and internal corrosion damage of buried pipeline, the electrochemical property of sensors and the correlation of its output to corrosion rate of steel pipe, were evaluated by electrochemical methods in two soils of varying resistivity (5,000 ohm-cm, 10,000 ohm-cm) and synthetic tap water environments. In this paper, two types of galvanic probes were manufactured: copper-pipeline steel (Cu-CS) and stainless steel-pipeline steel (SS-CS). The corrosion behavior in synthetic groundwater and synthetic tap water for the different electrodes was investigated by potentiodynamic test. The comparison of the sensor output and corrosion rates revealed that a linear relationship was found between the probe current and the corrosion rates. In the soil resistivity of $5,000{\Omega}-cm$ and tap water environments, only the Cu-CS probe had a good linear quantitative relationship between the sensor output current and the corrosion rate of pipeline steel. In the case of $10,000{\Omega}-cm$, although the SS-CS probe showed a better linear correlation than that of Cu-CS probe, the Cu-CS probe is more suitable than SS-CS probe due to the high current output.

Surface Morphology and Electrical Property of PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 표면형상과 전기적 특성)

  • Song, Yon-Ho;Yun, Young-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The metal nitride film formed on the stainless steel bipolar plates represented a microstructural morphology of fine columnar grains with 10 nm diameter and 60nm length in FE-SEM images. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

Shear Strengthening by Externally Post-tensioning Steel Rods in Damaged Reinforced Concrete (RC) Beams (손상입은 철근콘크리트 보의 포스트텐셔닝 강봉을 이용한 전단 보강)

  • Lee, Swoo-Heon;Lee, Hee-Du;Park, Seong-Geun;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • This experimental investigation was conducted to observe the shear strengthening behavior of pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. A total of six simply supported beams - two control beams and four post-tensioned beams using external steel rods - were tested to failure in shear. The external steel rods of 18 mm or 28 mm diameter were respectively employed as post-tensioning material. The four post-tensioned beams have a V-shaped profile with a deviator (or saddle pin) located at mid-span, and the post-tensioning system increased the low load-carrying capacity and overcame a little bit of deflection caused by damage. Concretely, the load-carrying capacity and flexural stiffness were respectively increased by about 25~57% and 263~387% due to the post-tensioning when compared with the unstrengthened control beams.

Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab

  • Najafi, Saeed;Borzoo, Shahin
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.271-287
    • /
    • 2022
  • This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.

Modeling fire performance of externally prestressed steel-concrete composite beams

  • Zhou, Huanting;Li, Shaoyuan;Zhang, Chao;Naser, M.Z.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.625-636
    • /
    • 2021
  • This paper examines the fire performance of uninsulated and uncoated restrained steel-concrete composite beams supplemented with externally prestressed strands through advanced numerical simulation. In this work, a sequentially coupled thermo-mechanical analysis is carried out using ABAQUS. This analysis utilizes a highly nonlinear three-dimensional finite element (FE) model that is specifically developed and validated using full-sized specimens tested in a companion fire testing program. The developed FE model accounts for nonlinearities arising from geometric features and material properties, as well as complexities resulting from prestressing systems, fire conditions, and mechanical loadings. Four factors are of interest to this work including effect of restraints (axial vs. rotational), degree of stiffness of restraints, the configuration of external prestressed tendons, and magnitude of applied loading. The outcome of this analysis demonstrates how the prestressing force in the external tendons is primarily governed by the magnitude of applied loading and experienced temperature level. Interestingly, these results also show that the stiffness of axial restraints has a minor influence on the failure of restrained and prestressed steel-concrete composite beams. When the axial restraint ratio does not exceed 0.5, the critical deflection of the composite beam is lower than that of the composite beam with a restraint ratio of 1.0.

Development of the Braket for External Prestressing Method in Slab Bridge (슬래브교 외부 강선 보강용 정착구 개발)

  • 한만엽;이상열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.93-98
    • /
    • 2001
  • This study is to develop the end anchorage of external steel reinforcement of RC slab bridges. External prestress method using the existing steel is that When the anchorage is installed in slab end, a plenty of anchor bolts were required because the only tangential stress of anchor bolt received a tendon force. Then, for this reason, the wide end anchorage was required and the shape was complicate. But this reinforcement method using method that inserts anchor key at concrete surface cut a groove gets big internal force comparing to the anchorage using existing anchor bolt. Furthermore, the number of anchor bolt for installing apparently will be reduced, and the operation will be convenient because a small anchorage of a simple shape will be received a great tendon force

  • PDF