• Title/Summary/Keyword: external disturbance

Search Result 400, Processing Time 0.043 seconds

Model reference sliding mode control for the system with input/ouput disturbance (입.출력 외란을 가지는 시스템에 대한 기준모델 슬라이딩 모드 제어)

  • 김우태;김가규;전해진;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.387-387
    • /
    • 2000
  • In this paper, we present a model reference sliding mode control for the system with input/output disturbance. The proposed model reference sliding mode control makes always the error remain on the surface in finite time. Therefore the system is insensitive to external disturbance. Simulation results are included to illustrate the effectiveness of proposed scheme.

  • PDF

Disturbance Observer with Binary Control (바이너리제어를 이용한 외란관측기)

  • You, Wan-Sik;Kim, Yeung-Cheol;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.297-299
    • /
    • 1995
  • In this paper, a disturbance observer with binary control is proposed to suppress the chattering of sliding mode observer in estimation of the external disturbance. Binary control has the properly of chattering alleviation in addition to advantages of the conventional sliding mode control. As a simulation result, it is confirmed that the robust and high precision position control is possible by the proposed binary observer.

  • PDF

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on $H_{\infty}$ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response

  • PDF

Intelligent Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.15-20
    • /
    • 2004
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on H$\_$$\infty$/ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response.

  • PDF

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

Trajectory Tracking Control of a Boom.Arm System of Hydraulic Excavator Using Disturbance Observer (외란관측기를 이용한 유압굴삭기 붐.아암 시스템의 궤적추적제어)

  • Cho S.H.;Ahn G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • This paper deals with the issue of trajectory tracking control of a hydraulic excavator using disturbance observer in order to compensate external disturbances occuring from coupling between attachment, asymmetry of a single rod cylinder, and deadzone of main control valve. Disturbance compensation control system with disturbance observer has been constructed for the boom and arm respectively. Simulation results were compared with experimental results to validate the computer simulation system of hydraulic excavator itself. Computer simulation shows that disturbance compensation control is effective for compensating system nonlinearity and thus improves positioning accuracy and trajectory tracking performance. Steady state error has been decreased by adding PI controller to this control scheme.

  • PDF

Sliding Mode Control with Disturbance Observer for An Active Magnetic Bearing System (능동자기베어링계에서 외란관측기를 갖는 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, a sliding mode control based on disturbance observer is proposed to attenuate disturbance responses in an active magnetic bearing system, which is subject to base motion. An algorithm for exactly decoupling the disturbance estimation dynamics from the sliding mode dynamics is developed. It is also shown that the proposed method preserves the robustness of the sliding mode and asymtotically achieves zero regulation error, in the presence of external disturbances and parametric uncertainties. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. The feasibility of the proposed technique is illustrated, and the results of an experimental demonstration are shown.

  • PDF

Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer (내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계)

  • Lee, Cho-Won;Kim, In Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.

Analysis of External Disturbance Torque on a LEO Satellite (저궤도 위성의 외란 토크 해석)

  • Yim, Jo-Ryeong;Kim, Yong-Bok;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 2011
  • The external disturbance torque acting on a low earth orbit spacecraft was analyzed. For the Earth pointing attitude, the maximum torque to the spacecraft is about $8.3{\times}10^{-4}$ Nms and the momentum accumulated for an orbit is about 1.4 Nms and for the Sun pointing attitude, the maximum torque to the spacecraft is about $1.6{\times}10^{-3}$ Nms and the momentum is accumulated about 3.0 Nms in the spacecraft body reference frame. The analysis results confirm that the size of magnetic torquer selected previously for the satellite is sufficient to manage the accumulated momentum by considering the dumping capacity for an orbit.

Variable Stiffness Series Elastic Actuator Design for Active Suspension (능동형 현가장치를 위한 가변 강성 직렬 탄성 액추에이터 설계)

  • Bang, Jinuk;Choi, Minsik;Lee, Donghyung;Park, Jungho;Park, Eunjae;Lee, Geunil;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • In this study, we developed an FSEA(Force-sensing Series Elastic Actuator) composed of a spring and an actuator has been developed to compensate for external disturbance forced. The FSEA has a simple structure in which the spring and the actuator are connected in series, and the external force can be easily measured through the displacement of the spring. And the characteristic of the spring absorbs the shock to the small disturbance and increases the sense of stability. It is designed and constructed to control the stiffness of such springs more flexibly according to the situation. The conventional FSEA uses a fixed stiffness spring and the actuator is not compensated properly when it receives large or small external force. Through this experiment, it is confirmed that FSEA compensates the external force through the proposed algorithm that the variable stiffness compensates well for large and small external forces.