• Title/Summary/Keyword: exterior fire

Search Result 121, Processing Time 0.021 seconds

A Study on the Modeling of Vertical Spread Fire of Exterior Panel by Fire Dynamic Simulation (FDS) (FDS를 이용한 외장재의 수직 확산 화재의 모델링에 관한 연구)

  • Min, Seh-Hong;Yoon, Jung-En
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.77-85
    • /
    • 2009
  • Considering heat insulation and beautiful sight of construction, making use of exterior panels is increasing. Recently the exterior panels now are weak very much, and so in consequence of the weakness fire spreads rapidly. Compared with internal fire, external vertical fire spread rate goes rapidly and it is extensive in spread range, therefore it is dangerous very much. Accordingly, under present condition of poor standard of exterior panels, it is required to take measure to meet the appropriate situation. In this study, by making use of FDS(Fire Dynamic Simulation) program about external vertical fire of high rise building, fire behavior is searched by computer. It is important that realizing by computer fire modeling about external vertical fire must be included certainly in procedure of fire performance design in the future. In modeling program, FDS version 5 is available, and aluminium composite panel is applied in external panels. In this study, for realizing of actual fire condition, FDS is applied by details of fire scenarios considering influence of wind.

Fire Risk by Type of Building Exterior Material through Fire Cases (화재사례를 통한 건축물 외장재 종류별 화재발생위험성)

  • Lee, Jeong-Il;Kweon, Young-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.155-161
    • /
    • 2022
  • Recently, the number of cases of fire spreading due to exterior materials of buildings is increasing. Due to the nature of modern architecture, which emphasizes the aesthetics of buildings, because buildings pursue a splendid appearance, they are inexpensive and have relatively good insulation performance, but an increasing number of buildings are adopting insulation materials that have poor fire safety performance. The risk of spread is also greatly increased. Since the exterior wall of a building is made of a variety of materials and structures, it is composed of a combination of several elements, including materials such as insulation and finishing materials. Therefore, it was determined that it was necessary to introduce a more systematic evaluation method for building exterior materials, and to improve the system reflecting this, away from the existing evaluation method that only checked the fire safety performance of finishing materials.

A Study on the Fire Risk Assessment of EIFS by Cone Calorimeter Test & Single Burning Item Test (중소형화재실험을 이용한 외단열 시스템(EIFS) 화재위험성평가에 관한 연구)

  • Min, Se-Hong;Kim, Mi-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Recently, in circumstantial situation it is recommended positively to utilize of EIFS(Exterior Insulating and Finishing System) as energy policy for economizing energy. But internal EPS insulators of EIFS are exterior panel of high fire risk, because of constituting of flammable materials to be fragile in fire. In this study, fire risk is assessed by experiment Con Calorimeter test and SBI(Single Burning Item) test. As the result of experiment, Con Calorimeter tests do not reach to capability standard of internal incombustible grade, and are assessed as low grade in SBI incombustible grade. Because EIPS is exterior material in buildings with high fire risk in spite of good efficiency, it is required rapidly to take measures to meet situation through various studies(for instance, adjusting law regulation, etc.) in the future.

Trial Construction for the Prevention of Fire Spread in Piloti Building (필로티건축물의 화재확산방지를 위한 시범시공)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.87-88
    • /
    • 2019
  • In case of Korea, The Large-scale fire is consistently being such as 2015 Uijeongbu Fire, 2017 Jecheon Fire, 2018 Sejong Hospital Fire. Such a fire has a problem that the fire is spreading upper due to external flame spread. As a countermeasure the fire safety, the study about axial temperature prediction of external flame spread is consistently doing. But in korea, Vertical spandrel is specified as 40cm, and improvement is urgently needed. In this study, a repair material was selected to prevent the fire from spreading to a building where a flammable exterior material was installed and then pilot construction was carried out. Also, fire safety measures for buildings constructed with flammable exterior materials were examined.

  • PDF

A Study on Concurrent Fire Appearance through Openings (개구부를 통한 동시다발적인 화재성상에 관한 연구)

  • Min, Se-Hong;Lee, Jae-Moon
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.90-96
    • /
    • 2012
  • Since vertical flame spread speed on exterior materials is much faster than horizontal fire, analysis of its fire characteristic is required. For the study of vertical fire pattern created by penetrating windows or openings from the exterior wall of buildings, the research is based on the fire simulation for an aluminum-complex-panel with which is commonly used as exterior materials and consists of polyethylene core material. As a result, the flame reaches the 2nd floor after 135 seconds in the early stage of fire, the 10the floor after 470 seconds and the 30th floor, the highest floor, after 711 seconds. The result shows that fire spread abruptly expands on upper floor due to stack effect of a turbulent flow or exterior materials. In consequence, we can confirm a serious problem that a conflagration of a building through an opening that is equipped with the exterior-materials spreads into interior of building at that same time.

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

A Study on Fire Spread Prevention of Building using Combusitible Exterior (가연성 외장재를 사용한 건축물의 화재확대방지에 관한 연구)

  • Park, SungHa;Kwon, YoungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.149-150
    • /
    • 2018
  • Recently, a large fire has occurred through a dry bit, which is a flammable exterior material, in Daebong Green Apartment Fire in Uijeongbu in 2015 and Jecheon Sports Center Fire in 2017. In this study, KS F ISO 5660-1 Cone calorimeter experiment was used to examine the fire risk of dry bit. Also, the performance of the repair and reinforcement materials to prevent fire expansion was examined. As a result, the dry bit is likely to be ignited by internal and external flower gardens, and its combustion rate and calorific value are very high. In addition, the performance of heat resistance such as ALC panel and ceramic board as a repair and reinforcement material has been proved. However, the insulation is expected to require further consideration.

  • PDF

An Investigation on the Existing Literature to Prevent Fire Spread of High-rise Buildings (고층 건축물의 화재확대방지를 위한 기존 문헌 조사)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.102-103
    • /
    • 2021
  • In Korea, starting with the Busan residential-commercial fire in 2010, the frequency of fire expansion in high-rise buildings has been continuously increasing. In the case of such large-scale fires, most of the fires generated from the inside tend to expand to the upper floors by riding the exterior material or exterior wall panels through the process of being ejected to the outside. It has been revised so that combustible exterior materials cannot be used in buildings. However, due to the legal fluoride level, the fire risk of high-rise buildings is still high, such as the case of a 33-story residential-commercial fire in Ulsan. In order to prevent such fire expansion, it is considered that it is necessary to first understand the nature of the fire occurring inside and the mechanism of the fire expansion in the upper floor. The purpose of this study is to propose improvements in domestic fire safety design through a review of existing literature to prevent fire expansion of high-rise buildings.

  • PDF

A Study on the Development of a Head for Prevent the Fire Spread of Exterior (외장재 연소확대방지용 헤드 개발에 관한 연구)

  • Min, Se-Hong;Kim, Mi-Suk;Jang, Young-Jin;Sa, Jae-Chun;Bae, Yeon-Jun;Lee, Jae-Moon
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • In this research, in order to prevent spread of vertical flame from building exterior fire, A head was developed. The performance standards of Head development complied with NFPA 80A 7.7.4.3 (Recommended Practice for Protection of Buildings Exterior Fire Exposures) and the standards are applied to the discharge pressure was 0.05 MPa and the discharge flow rate was 60 l/min. The head was developed about applied to 0.05 MPa and 65 l/min through the process of the experiment of five times, it is processed from drencher head and used in domestic intended use and structure are quite different. An appropriate distances between the head and the head proved as the experimental results to within 3 m~5 m and it selectively applied to the design is being considered depending on the fire hazard strength.

A Study on Block from Spread of Fire of the Exteriors Installation Space (외장재 설치 공간의 화재확산 차단에 관한 연구)

  • Min, Se-Hong;Yun, Jung-Eun;Kim, Mi-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • In this study, FDS fire simulation experiments and measured wind speed by applying the exterior installation portion for blocking the spread of the fire was investigated. As a result, aluminum composite panels installed in the lower and the upper part of the panel to remove all the lower side, and then the maximum wind speed 0.24 m/s and the upper side 0.58 m/s were measured. In the FDS, the measured wind speed difference air currents are approximately 3.7 times in 12 seconds, the occurrence of 17 seconds early moment wind 2.2 m/s was measured from. Before and after the fire occurred in early of the air velocity about 39 seconds was 3.5 times difference. Such air currents caused by the temperature of the building but also by the building height was found. Turbulent flame of fire by expanding the vertical extent of damage become greatly important factor. Therefore, through the exterior installation portion of the block that can delay the spread of fire is expected that this should be taken.