• Title/Summary/Keyword: extended modular group

Search Result 4, Processing Time 0.02 seconds

RELATIONSHIPS BETWEEN CUSP POINTS IN THE EXTENDED MODULAR GROUP AND FIBONACCI NUMBERS

  • Koruoglu, Ozden;Sarica, Sule Kaymak;Demir, Bilal;Kaymak, A. Furkan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.569-579
    • /
    • 2019
  • Cusp (parabolic) points in the extended modular group ${\bar{\Gamma}}$ are basically the images of infinity under the group elements. This implies that the cusp points of ${\bar{\Gamma}}$ are just rational numbers and the set of cusp points is $Q_{\infty}=Q{\cup}\{{\infty}\}$.The Farey graph F is the graph whose set of vertices is $Q_{\infty}$ and whose edges join each pair of Farey neighbours. Each rational number x has an integer continued fraction expansion (ICF) $x=[b_1,{\cdots},b_n]$. We get a path from ${\infty}$ to x in F as $<{\infty},C_1,{\cdots},C_n>$ for each ICF. In this study, we investigate relationships between Fibonacci numbers, Farey graph, extended modular group and ICF. Also, we give a computer program that computes the geodesics, block forms and matrix represantations.

RAY CLASS INVARIANTS IN TERMS OF EXTENDED FORM CLASS GROUPS

  • Yoon, Dong Sung
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.87-95
    • /
    • 2021
  • Let K be an imaginary quadratic field with ��K its ring of integers. For a positive integer N, let K(N) be the ray class field of K modulo N��K, and let ��N be the field of meromorphic modular functions of level N whose Fourier coefficients lie in the Nth cyclotomic field. For each h ∈ ��N, we construct a ray class invariant as its special value in terms of the extended form class group, and show that the invariant satisfies the natural transformation formula via the Artin map in the sense of Siegel and Stark. Finally, we establish an isomorphism between the extended form class group and Gal(K(N)/K) without any restriction on K.

QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF j(sub)1,8

  • Hong, Kuk-Jin;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.595-611
    • /
    • 2001
  • Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.

  • PDF

ON SOME TWISTED COHOMOLOGY OF THE RING OF INTEGERS

  • Lee, Seok-Min
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.77-102
    • /
    • 2017
  • As an analogy of $Poincar{\acute{e}}$ series in the space of modular forms, T. Ono associated a module $M_c/P_c$ for ${\gamma}=[c]{\in}H^1(G,R^{\times})$ where finite group G is acting on a ring R. $M_c/P_c$ is regarded as the 0-dimensional twisted Tate cohomology ${\hat{H}}^0(G,R^+)_{\gamma}$. In the case that G is the Galois group of a Galois extension K of a number field k and R is the ring of integers of K, the vanishing properties of $M_c/P_c$ are related to the ramification of K/k. We generalize this to arbitrary n-dimensional twisted cohomology of the ring of integers and obtain the extended version of theorems. Moreover, some explicit examples on quadratic and biquadratic number fields are given.