• 제목/요약/키워드: expression in E. coli

검색결과 1,069건 처리시간 0.024초

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

Streptomyces coelicolor의 RraA 동족체인 RraAS2에 의한 Escherichia coli RNase E 활성조절 (Modulation of Escherichia coli RNase E. Action by RraAS2, a Streptomyces coelicolor Ortholog of RraA)

  • 안상미;신은경;염지현;이강석
    • 미생물학회지
    • /
    • 제44권2호
    • /
    • pp.93-97
    • /
    • 2008
  • 최근 Escherichia coli에서 RNA의 분해와 가공과정에 중추적인 역할을 하는 리보핵산 내부분해효소인 RNase E의 효소활성을 조절하는 단백질 조절자인 RraA가 밝혀졌으며, 이 단백질은 E. coli RNase E의 효소활성 부위와 36%의 유사성을 가지는, Streptomyces coelicolor RNase ES의 효소활성을 조절하는 것으로 알려져 있다. S. coelicolor의 유전체에는 RraA와 아미노산 서열이 35.4% 이상 유사한 단백질을 코딩하는 유전자가 두 개 존재하는데, 그 중 하나인 rraAS2를 클로닝하여 E. coli RNase E의 효소활성을 조절하는지를 알아보았다. 그 결과 세포내에서 RraAS2를 발현시키면 RNase E의 과발현에 의해 저해된 세포의 생장을 RraA와 같이 효과적으로는 아니지만, 어느 정도 복원시키는 것을 확인하였다. 또한 RraAS2가 발현됨으로서 RNase E의 과발현에 의해 증가된 ColE1-타입 플라스미드의 복제 수를 14% 감소시키는 것을 관찰하였다. 이러한 결과는 RraAS2가 RNase E의 RNA I분자에 대한 효소 활성을 저해하는 능력을 가지고 있음을 시사한다. 동일한 배양조건에서 E. coli 세포내에서의 RNase E에 대한 RraAS2의 상대적인 발현양이 RraA에 비해 6.2배 낮은 것을 확인하였고, 이로 인해 RraAS2가 RNase E의 과발현에 의한 세포 생장의 저해를 복원하는데 필요한 모든 RNA의 가공과 분해속도를 효과적으로 조절하지는 못한다는 것을 추론할 수 있다.

Clostridium thermocellum의 Cellulase 유전자의 Cloning (Cloning and Expression in Escherichia coli of a Cellulase Gene from Clostridium thermocellum)

  • 하지홍;한성숙;김욱한;이용현
    • 한국미생물·생명공학회지
    • /
    • 제15권5호
    • /
    • pp.346-351
    • /
    • 1987
  • Clostridium thermocellum의 cellulase 유전자를 pBR322를 이용하여 Escherichia coli에 cloning하였다. 삽입된 Hind III 분해 DNA 단편의 크기는 약 1. 8kb였으며 이미 알려진 C. themocellum의 cellulase gene과는 다른 제한효소 분해위치를 가진 새로운 cellulase gene으로서 E, coli에서 CMCase와 FPase 활성을 나타내었다. 이 유전자는 생육의 전시기를 통해 표현되었고 고온성 cellulase의 구조적, 기능적 특성이 그대로 유지되었을 뿐만 아니라 상당량이 세포밖으로 분비되었다.

  • PDF

Expression of a Recombinant Bacillus thuringiensis $\delta$-Endotoxin Fused with Enhanced Green Fluorescent Protein in Escherichia coli

  • Je, Yeon-Ho;Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Shim, Hee-Jin;Jin, Byung-Rae;Boo, Kyung-Saeng
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제8권2호
    • /
    • pp.145-149
    • /
    • 2004
  • The expression of a fusion protein comprised of the B. thuringiensis crystal protein, Cry1Ac, and enhanced green fluorescent protein (EGFP) in Escherichia coli XLl-blue was examined. Three recombinant plasmids were transformed into E. coli XL1-blue and named as ProAc/Ec, MuEGFP/Ec and ProMu-EGFP/Ec, respectively. All transformants were observed by light and fluorescence microscopy at mid-log phase. The expression in E. coli transformants, ProMu-EGFP/Ec and MuEGFP/Ec, exhibited bright enough fluorescence to be observed. Furthermore, ProMu-EGFP/Ec produced fluorescent inclusions, which may have been recombinant crystals between EGFP and Cry1Ac while MuEGFP/Ec expressed soluble EGFP in cell. In SDS-PAGE, ProAc/Ec had 130 kDa crystal protein band and MuEGFP/Ec had thick 27 kDa EGFP band. However, ProMu-EGFP/Ec had about 150 kDa fusion protein band. Accordingly, these results indicated that a fusion protein between the B. thuringiensis crystal protein and a foreign protein under the lacZ promoter was successfully expressed as granular structure in E. coli. It is suggested that the E. coli expression system by N-terminal fusion of B. thuringiensis crystal protein may be useful as excellent means for fusion expression and characterization of B. thuringiensis fusion crystal protein.

Hc nuclear polyhedrosis virus DNA 제한효소절편의 molecular cloning 과 외래 유전자 발현 (Molecular cloning and foreign gene expression of restriction endonuclease fragments of the Hc nuclear polyhedrosis virus DNA)

  • 이근광
    • 한국어병학회지
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 1995
  • HcNPV DNA genome 을 제한효소 EcoRI 으로 절단하여 그들의 일부 절편을 pUC8 vector 에 cloning 한 후 E. coli JM 83 세포에 형질 전환시켰다. 이 결과 24 개의 EcoRI 절편중 12 개의 절편이 cloning 되었다. 이들 제조합체중 4 개는 eNP-O, eNP-Q, eNP-R, eNP-S 라 명명하였다. 또한 이들 제조합체의 외래 유전자 발현을 SDS-PAGE 에 의해 단백질 패턴을 분석하였다. 그 결과 제조합체 eNP-O, eNP-Q, eNP-R 에서는 E. coli JM 83 숙주세포의 단백질 밴드와 비교하여 다른 분자량을 갖는 밴드가 나타났다.

  • PDF

B. pasteurii Urease 유전인자의 E. coli의 복제와 발현 (Molecular Cloning and Expression of Bacillus pasteurii Urease Gene in Escherichia coli)

  • Kim, Sang-Dal;John Spizizen
    • 한국미생물·생명공학회지
    • /
    • 제13권3호
    • /
    • pp.297-302
    • /
    • 1985
  • 미생물중 urease생성능이 아주 강한 B. pasteurii의 Hind III partial digest 된 chromosomal DNA를 E. coli-B. subtilis bifunctional plasmid vector pGR 71으로 E. coli RR1 균주에 cloning 하므로써 그 urease gene을 expression시킬 수 있었다. 그러나 B. subtilis에서는 insertion DNA fragment의 deletion으로 expression되지 않았다. Cloning된 E.coli RR1 균주로부터 분리 정제한 urease gene함유 Plasmid(pGU66)의 restriction map을 작성하여 본 결과 7.1 Mdal의 insertion fragment가 삽입된 12.6Mdal의 plasmid에 Hind III, Bgl II, Xba I, Sal I등 몇 개의 cleavage site 위치를 찾을 수 있었다. Cloning된 E. coli의 urease는 periplasmic space에 많은 비율로 축적되며, 그 효소학적 성질은 donor인 B.pasteurii의 그것과 매우 유사하였다.

  • PDF

Development of Indole-3-Acetic Acid-Producing Escherichia coli by Functional Expression of IpdC, AspC, and Iad1

  • Romasi, Elisa Friska;Lee, Jinho
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1726-1736
    • /
    • 2013
  • Biosynthesis of indole-3-acetic acid (IAA) via the indole-3-pyruvic acid pathway involves three kinds of enzymes; aminotransferase encoded by aspC, indole-3-pyruvic acid decarboxylase encoded by ipdC, and indole-3-acetic acid dehydrogenase encoded by iad1. The ipdC from Enterobacter cloacae ATCC 13047, aspC from Escherichia coli, and iad1 from Ustilago maydis were cloned and expressed under the control of the tac and sod promoters in E. coli. According to SDS-PAGE and enzyme activity, IpdC and Iad1 showed good expression under the control of $P_{tac}$, whereas AspC was efficiently expressed by $P_{sod}$ originating from Corynebacterium glutamicum. The activities of IpdC, AspC, and Iad1 from the crude extracts of recombinant E. coli Top 10 were 215.6, 5.7, and 272.1 nmol/min/mg-protein, respectively. The recombinant E. coli $DH5{\alpha}$ expressing IpdC, AspC, and Iad1 produced about 1.1 g/l of IAA and 0.13 g/l of tryptophol (TOL) after 48 h of cultivation in LB medium with 2 g/l tryptophan. To improve IAA production, a tnaA gene mediating indole formation from tryptophan was deleted. As a result, E. coli IAA68 with expression of the three genes produced 1.8 g/l of IAA, which is a 1.6-fold increase compared with wild-type $DH5{\alpha}$ harboring the same plasmids. Moreover, the complete conversion of tryptophan to IAA was achieved by E. coli IAA68. Finally, E. coli IAA68 produced 3.0 g/l of IAA after 24 h cultivation in LB medium supplemented with 4 g/l of tryptophan.

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • 제42권2호
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.

Cell growth and GFP expression in E. coli BL21 and W3110 under coexpression of Vitreoscilla hemogobin

  • 강동균;김연규;차형준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.754-757
    • /
    • 2001
  • Expression of the vhb gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been used to improve recombinant cell growth and enhance product formation under microaerobic conditions because of its ability to enhance oxygen use. We coexpressed GFP and VHb in Escherichia coli BL21 and W3110, and compared with GFP control which was not expressed VHb. We used nar oxygen-dependent inducible promoter for VHb expression. The GFP amounts in E. coli expressed VHb was about five fold higher than in the control Fluorescence intensity was increased about two fold.

  • PDF

Secretion of Human Angiogenin into Periplasm and Culture Medium with Its Eukaryotic Signal Sequence by Escherichia coli

  • Jung, Woo-Jung;Choi, Suk-Jung
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.80-84
    • /
    • 1997
  • The synthesis and secretion of human angiogenin in E. coli by the natural leader sequence has been studied. We constructed a recombinant plasmid containing human angiogenin cDNA which encompassed all the coding region including leader sequence required for secretion. The recombinant plasmid was introduced into a suitable E. coli host. The angiogenin was detected in the culture medium and periplasm upon the induction of gene expression. The molecular weight of the secreted angiogenin was identical to that of authentic angiogenin purfied from human plasma when estimated by SDS-PAGE and immunoblotting. showing that the natural leader sequence was recognized and processed by the secretion machinery of E. coli. The angiogenin concentration in the culture medium reached a maximum within 2 h when expressed at $37^{\circ}C$ with 0.02~2 mM IPTG. In contrast, the expression level increased gradually over time up to 11 h at $23^{\circ}C$ with 0.002~2 mM IPTG and at $37^{\circ}C$ with 0.002 mM IPTG.

  • PDF