Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08082

Development of Indole-3-Acetic Acid-Producing Escherichia coli by Functional Expression of IpdC, AspC, and Iad1  

Romasi, Elisa Friska (Department of Food Science and Biotechnology, Kyungsung University)
Lee, Jinho (Department of Food Science and Biotechnology, Kyungsung University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.12, 2013 , pp. 1726-1736 More about this Journal
Abstract
Biosynthesis of indole-3-acetic acid (IAA) via the indole-3-pyruvic acid pathway involves three kinds of enzymes; aminotransferase encoded by aspC, indole-3-pyruvic acid decarboxylase encoded by ipdC, and indole-3-acetic acid dehydrogenase encoded by iad1. The ipdC from Enterobacter cloacae ATCC 13047, aspC from Escherichia coli, and iad1 from Ustilago maydis were cloned and expressed under the control of the tac and sod promoters in E. coli. According to SDS-PAGE and enzyme activity, IpdC and Iad1 showed good expression under the control of $P_{tac}$, whereas AspC was efficiently expressed by $P_{sod}$ originating from Corynebacterium glutamicum. The activities of IpdC, AspC, and Iad1 from the crude extracts of recombinant E. coli Top 10 were 215.6, 5.7, and 272.1 nmol/min/mg-protein, respectively. The recombinant E. coli $DH5{\alpha}$ expressing IpdC, AspC, and Iad1 produced about 1.1 g/l of IAA and 0.13 g/l of tryptophol (TOL) after 48 h of cultivation in LB medium with 2 g/l tryptophan. To improve IAA production, a tnaA gene mediating indole formation from tryptophan was deleted. As a result, E. coli IAA68 with expression of the three genes produced 1.8 g/l of IAA, which is a 1.6-fold increase compared with wild-type $DH5{\alpha}$ harboring the same plasmids. Moreover, the complete conversion of tryptophan to IAA was achieved by E. coli IAA68. Finally, E. coli IAA68 produced 3.0 g/l of IAA after 24 h cultivation in LB medium supplemented with 4 g/l of tryptophan.
Keywords
Indole-3-acetic acid; aminotransferase; indole-3-purivic acid decarboxylase; indole-3-acetaldehyde dehydrogenase; functional expression; Escherichia coli;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ. 2012. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol. 78: 1404-1410.   DOI
2 Fedorov DN, Doronina NV, Trotsenko YA. 2010. Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Biochemistry (Mosc.) 75: 1435-1443.   DOI
3 Apine OA, Jadhav JP. 2011. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 110: 1235-1244.   DOI   ScienceOn
4 Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/ alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85: 651-657.   DOI   ScienceOn
5 Basse CW, Lottspeich F, Steglich W, Kahmann R. 1996. Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. Eur. J. Biochem. 242: 648-656.   DOI   ScienceOn
6 Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415.   DOI   ScienceOn
7 Ward DE, de Vos WM, Oost J. 2002. Molecular analysis of the role of two aromatic aminotransferases and a broadspecificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus. Archaea 1: 133-141.   DOI
8 Yamada T, Curtis JP, Brooks B, Kosuge T. 1985. Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens TDNA. Proc. Natl. Acad. Sci. USA 82: 6522-6526.   DOI   ScienceOn
9 Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61: 49-64.   DOI   ScienceOn
10 Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant Pathol. 9: 339-355.   DOI   ScienceOn
11 Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946-950.   DOI   ScienceOn
12 Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, $3^{rd}$ Ed. Cold Spring Harbor L aboratory Press, Cold Spring Harbor, NY.
13 Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448.   DOI   ScienceOn
14 Schutz A, Golbik R, Tittmann K, Svergun DI, Koch MH, Hubner G, et al. 2003. Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem. 270: 2322-2331.   DOI   ScienceOn
15 Seo SW, Yang J, Jung GY. 2009. Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnol. Bioeng. 104: 611-616.   DOI   ScienceOn
16 Spaepen S, Versées W, Gocke D, Pohl M, Steyaert J, Vanderleyden J. 2007. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J. Bacteriol. 189: 7626-7633.   DOI   ScienceOn
17 Sprenger GA. 2007. From scratch to value: engineering Escherichia coli wild type cells to the production of Lphenylalanine and other fine chemicals derived from chorismate. Appl. Microbiol. Biotechnol. 75: 739-749.   DOI   ScienceOn
18 Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, et al. 2008. Rapid synthesis of auxin via a new tryptophandependent pathway is required for shade avoidance in plants. Cell 133: 164-176.   DOI   ScienceOn
19 Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J. 1999. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J. Bacteriol. 181: 1338-1342.
20 Wang J, Cheng L K, Wang J, L iu Q , Shen T , Chen N . 2013. Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl. Microbiol. Biotechnol. 97: 7587-7596.   DOI   ScienceOn
21 Manulis S, Shafrir H, Epstein E, Lichter A, Barash I. 1994. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140: 1045-1050.   DOI
22 Minamisawa K, Fukai K. 1991. Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol. 32: 1-9.
23 Patten CL, Glick BR. 2002. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can. J. Microbiol. 48: 635-642.   DOI   ScienceOn
24 Palm CJ, Gaffney T, Kosuge T. 1989. Cotranscription of genes encoding indoleacetic acid production in Pseudomonas syringae subsp. savastanoi. J. Bacteriol. 171: 1002-1009.
25 Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH. 2008. Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes. J. Microbiol. Biotechnol. 18: 639-647.
26 Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, et al. 2007. Design of 5'-untranslated region variants for tunable expression in Escherichia coli. Biochem. Biophys. Res. Commun. 356: 136-141.   DOI   ScienceOn
27 Patten CL, Glick BR. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801.   DOI   ScienceOn
28 Pedraza RO, Ramírez-Mata A, Xiqui ML, Baca BE. 2004. Aromatic amino acid aminotransferase activity and indole-3- acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol. Lett. 233: 15-21.   DOI   ScienceOn
29 Phi QT, Park YM, Ryu CM, Park SH, Ghim SY. 2008. Functional identification and expression of indole-3-pyruvate decarboxylase from Paenibacillus polymyxa E681. J. Microbiol. Biotechnol. 18: 1235-1244.
30 Powell JT, Morrison JF. 1978. The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli. Eur. J. Biochem. 87: 391-400.   DOI   ScienceOn
31 Prusty R, Grisafi P, Fink GR. 2004. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101: 4153-4157.   DOI   ScienceOn
32 Kang BR, Yang KY, Cho BH, H an TH, K im I S, L ee MC, et al. 2006. Production of indole-3-acetic acid in the plantbeneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52: 473-476.   DOI   ScienceOn
33 Fotheringham IG, Dacey SA, Taylor PP, Smith TJ, Hunter MG, Finlay ME, et al. 1986. The cloning and sequence analysis of the aspC and tyrB genes from Escherichia coli K12. Comparison of the primary structures of the aspartate aminotransferase and aromatic aminotransferase of E. coli with those of the pig aspartate aminotransferase isoenzymes. Biochem. J. 234: 593-604.
34 Hao X, Xie P, Johnstone L, Miller SJ, Rensing C, Wei G. 2012. Genome sequence and mutational analysis of plant-growthpromoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl. Environ. Microbiol. 78: 5384-5394.   DOI
35 Jarboe LR. 2011. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl. Microbiol. Biotechnol. 89: 249-257.   DOI   ScienceOn
36 Katzy EI, Iosipenko AD, Egorenkov DA, Zhuravleva EA, Panasenko VI, Ignatov VV. 1990. Involvement of Azospirillum brasilense plasmid DNA in the production of indole acetic acid. FEMS Microbiol. Lett. 60: 1-4.
37 Koga J, Adachi T, Hidaka H. 1991. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol. Gen. Genet. 226: 10-16.
38 Koga J, Adachi T, Hidaka H. 1992. Purification and characterization of indolepyruvate decarboxylase a novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J. Biol. Chem. 267: 15823-15828.
39 Lerner CG, Inouye M. 1990. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res. 18: 4631.   DOI   ScienceOn
40 London J, Goldberg ME. 1972. The tryptophanase from Escherichia coli K-12. I. Purification, physical properties, and quaternary structure. J. Biol. Chem. 247: 1566-1570.
41 Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587- 8596.   DOI   ScienceOn
42 Maejima Y, Nakatsugawa H, Ichida D, Maejima M, Aoyagi Y, Maoka T, et al. 2011. Functional compounds in fermented buckwheat sprouts. Biosci. Biotechnol. Biochem. 75: 1708-1712.   DOI   ScienceOn
43 Malhotra M, Srivastava S. 2006. Targeted engineering of Azosprillum brasilense SM with indole acetamide pathway for indoleacetic acid over-expression. Can. J. Microbiol. 52: 1078-1084.   DOI   ScienceOn
44 Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent- Combaret C, Jurkevich E, et al. 2010. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res. Microbiol. 161: 219-226.   DOI   ScienceOn
45 Beyeler M, Keel C, Michaux P, Haas D. 1999. Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol. Ecol. 28: 225-233.   DOI
46 Brandl MT, Lindow SE. 1996. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl. Environ. Microbiol. 62: 4121-4128.
47 Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: $Tc^R$ and $Km^R$ cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14.   DOI   ScienceOn
48 Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.   DOI   ScienceOn
49 de Smit MH, van Duin J. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144-150.   DOI   ScienceOn