• Title/Summary/Keyword: exponential functions

Search Result 360, Processing Time 0.027 seconds

A Non-Linear Exponential(NLINEX) Loss Function in Bayesian Analysis

  • Islam, A.F.M.Saiful;Roy, M.K.;Ali, M.Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.899-910
    • /
    • 2004
  • In this paper we have proposed a new loss function, namely, non-linear exponential(NLINEX) loss function, which is quite asymmetric in nature. We obtained the Bayes estimator under exponential(LINEX) and squared error(SE) loss functions. Moreover, a numerical comparison among the Bayes estimators of power function distribution under SE, LINEX, and NLINEX loss function have been made.

  • PDF

On the comparison of cumulative hazard functions

  • Park, Sangun;Ha, Seung Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.623-633
    • /
    • 2019
  • This paper proposes two distance measures between two cumulative hazard functions that can be obtained by comparing their difference and ratio, respectively. Then we estimate the measures and present goodness of t test statistics. Since the proposed test statistics are expressed in terms of the cumulative hazard functions, we can easily give more weights on earlier (or later) departures in cumulative hazards if we like to place an emphasis on earlier (or later) departures. We also show that these test statistics present comparable performances with other well-known test statistics based on the empirical distribution function for an exponential null distribution. The proposed test statistic is an omnibus test which is applicable to other lots of distributions than an exponential distribution.

MONOTONICITY CRITERION AND FUNCTIONAL INEQUALITIES FOR SOME q-SPECIAL FUNCTIONS

  • Mehrez, Khaled
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.133-147
    • /
    • 2021
  • Our aim in this paper is to derive several new monotonicity properties and functional inequalities of some functions involving the q-gamma, q-digamma and q-polygamma functions. More precisely, some classes of functions involving the q-gamma function are proved to be logarithmically completely monotonic and a class of functions involving the q-digamma function is showed to be completely monotonic. As applications of these, we offer upper and lower bounds for this special functions and new sharp upper and lower bounds for the q-analogue harmonic number harmonic are derived. Moreover, a number of two-sided exponential bounding inequalities are given for the q-digamma function and two-sided exponential bounding inequalities are then obtained for the q-tetragamma function.

APPROXIMATE GENERALIZED EXPONENTIAL FUNCTIONS

  • Lee, Eun-Hwi
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.451-462
    • /
    • 2009
  • In this paper we prove the superstability of a generalized exponential functional equation $f(x+y)=a^{2xy-1}g(x)f(y)$. It is a generalization of the superstability theorem for the exponential functional equation proved by Baker. Also we investigate the stability of this functional equation in the following form : ${\frac{1}{1+{\delta}}}{\leq}{\frac{f(x+y)}{a^{2xy-1}g(x)f(y)}}{\leq}1+{\delta}$.

ESTIMATES OF CHRISTOFFEL RUNCTIONS FOR GENERALIZED POLYNOMIALS WITH EXPONENTIAL WEIGHTS

  • Joung, Hae-Won
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.121-134
    • /
    • 1999
  • Generalized nonnegative polynomials are defined as the products of nonnegative polynomials raised to positive real powers. The generalized degree can be defined in a natural way. We extend some results on Infinite-Finite range inequalities, Christoffel functions, and Nikolski type inequalities corresponding to weights W\ulcorner(x)=exp(-|x|\ulcorner), $\alpha$>0, to those for generalized nonnegative polynomials.

  • PDF

CHARACTERIZATIONS OF SOME POLYNOMIAL VARIANCE FUNCTIONS BY d-PSEUDO-ORTHOGONALITY

  • KOKONENDJI CELESTIN C.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.427-438
    • /
    • 2005
  • From a notion of d-pseudo-orthogonality for a sequence of poly-nomials ($d\;\in\;{2,3,\cdots}$), this paper introduces three different characterizations of natural exponential families (NEF's) with polynomial variance functions of exact degree 2d-1. These results provide extended versions of the Meixner (1934), Shanbhag (1972, 1979) and Feinsilver (1986) characterization results of quadratic NEF's based on classical orthogonal polynomials. Some news sets of polynomials with (2d-1)-term recurrence relation are then pointed out and we completely illustrate the cases associated to the families of positive stable distributions.

A Study on the Software Reliability Model Analysis Following Exponential Type Life Distribution (지수 형 수명분포를 따르는 소프트웨어 신뢰모형 분석에 관한 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.4
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, I was applied the life distribution following linear failure rate distribution, Lindley distribution and Burr-Hatke exponential distribution extensively used in the arena of software reliability and were associated the reliability possessions of the software using the nonhomogeneous Poisson process with finite failure. Furthermore, the average value functions of the life distribution are non-increasing form. Case of the linear failure rate distribution (exponential distribution) than other models, the smaller the estimated value estimation error in comparison with the true value. In terms of accuracy, since Burr-Hatke exponential distribution and exponential distribution model in the linear failure rate distribution have small mean square error values, Burr-Hatke exponential distribution and exponential distribution models were stared as the well-organized model. Also, the linear failure rate distribution (exponential distribution) and Burr-Hatke exponential distribution model, which can be viewed as an effectual model in terms of goodness-of-fit because the larger assessed value of the coefficient of determination than other models. Through this study, software workers can use the design of mean square error, mean value function as a elementary recommendation for discovering software failures.

Evaluation of RVE Suitability Based on Exponential Curve Fitting of a Probability Distribution Function (확률 분포 함수의 지수 곡선 접합을 이용한 RVE 적합성 평가)

  • Chung, Sang-Yeop;Yun, Tae Sup;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.425-431
    • /
    • 2010
  • The phase distribution in a multi-phase material strongly affects its material properties. Therefore, a proper method to describe the phase distribution of a material is needed. In this research, probability distribution functions, two-point correlation and lineal-path functions, are used to represent the probabilistic phase distributions of a material. The probability distribution function is calculated using a numerical method and is described as an analytical form via exponential curve fitting with three parameters. Application of analytical form of probability distribution function is investigated using two-phase polycrystalline solids and soil samples. It is confirmed that the probability distribution functions can be represented as an exponential form using curve fitting which helps identifying the applicability of a representative volume element(RVE).

Design of a Floating Point Processor for Nonlinear Functions on an Embedded FPGA (비선형 함수 연산을 위한 FPGA 기반의 부동 소수점 프로세서의 설계)

  • Kim, Jeong Seob;Jung, Seul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.251-259
    • /
    • 2008
  • This paper presents the hardware design of a 32bit floating point based processor. The processor can perform nonlinear functions such as sinusoidal functions, exponential functions, and other mathematical functions. Using the Taylor series and Newton - Raphson method, nonlinear functions are approximated. The processor is actually embedded on an FPGA chip and tested. The numerical accuracy of the functions is compared with those computed by the MATLAB and confirmed the performance of the processor.

  • PDF