• Title/Summary/Keyword: exponential

Search Result 3,712, Processing Time 0.031 seconds

A Study on the Characteristics of Software Reliability Model Using Exponential-Exponential Life Distribution (수명분포가 지수화-지수분포를 따르는 소프트웨어 신뢰모형 특성에 관한 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.3
    • /
    • pp.69-75
    • /
    • 2020
  • In this paper, we applied the shape parameters of the exponentialized exponential life distribution widely used in the field of software reliability, and compared the reliability properties of the software using the non-homogeneous Poisson process in finite failure. In addition, the average value function is also a non-decreasing form. In the case of the larger the shape parameter, the smaller the estimated error in predicting the predicted value in comparison with the true value, so it can be regarded as an efficient model in terms of relative accuracy. Also, in the larger the shape parameter, the larger the estimated value of the coefficient of determination, which can be regarded as an efficient model in terms of suitability. So. the larger the shape parameter model can be regarded as an efficient model in terms of goodness-of-fit. In the form of the reliability function, it gradually appears as a non-increasing pattern and the higher the shape parameter, the lower it is as the mission time elapses. Through this study, software operators can use the pattern of mean square error, mean value, and hazard function as a basic guideline for exploring software failures.

Probing Gamma-ray Emission of Geminga and Vela with Non-stationary Models

  • Chai, Yating;Cheng, Kwong-Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.75-92
    • /
    • 2016
  • It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps) via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope) cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included) and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.

The Study for NHPP Software Reliability Growth Model Based on Hyper-exponential Distribution (초지수분포(Hyper-exponential)를 이용한 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the hyper-exponential distribution reliability model, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method. For model determination and selection, explored goodness of fit (the error sum of squares). The methodology developed in this paper is exemplified with a software reliability random data set introduced by of Weibull distribution (shape 0.1 & scale 1) of Minitab (version 14) statistical package.

  • PDF

Design and Implementation of an Adaptive Sliding-Mode Observer for Sensorless Vector Controlled Induction Machine Drives

  • Zhang, Yanqing;Yin, Zhonggang;Liu, Jing;Tong, Xiangqian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1304-1316
    • /
    • 2018
  • An adaptive sliding-mode observer for speed estimation in sensorless vector controlled induction machine drives is proposed in this paper to balance the dilemma between the requirement of fast reaching transient and the chattering phenomenon reduction on the sliding-mode surface. It is well known that the sliding-mode observer (SMO) suffers from the chattering phenomenon. However, the reduction of the chattering phenomenon will lead to a slow transient process. In order to balance this dilemma, an adaptive exponential reaching law is introduced into SMO by optimizing the reaching way to the sliding-mode surface. The adaptive exponential reaching law is based on the options of an exponential term that adapts to the variations of the sliding-mode surface and system states. Moreover, the proposed sliding-mode observer considering adaptive exponential reaching law, which is called adaptive sliding-mode observer (ASMO), is capable for reducing the chattering phenomenon and decreasing the reaching time simultaneously. The stability analysis for ASMO is achieved based on Lyapunov stability theory. Simulation and experimental results both demonstrate the correctness and the effectiveness of the proposed method.

Comparative analysis of yeast cell viability at exponential and stationary growth phases

  • An, Yejin;Jo, Nayoon;Kim, Hyeji;Nam, Dahye;Son, Woorim;Park, Jinkyu
    • Analytical Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.181-188
    • /
    • 2022
  • This paper describes a comparative analysis of yeast cell viability at exponential and stationary growth phases using multiple conventional techniques and statistical tools. Overall, cellular responses to various viability assays were asynchronous. Results of optical density measurement and direct cell counting were asynchronous both at exponential and stationary phases. Proliferative capacity measurement using SP-SDS indicated that cells at the end of the stationary phase were proliferative as much as exponentially growing cells. Metabolic activity assays using two different dyes concluded that the inside of cells at stationary phase is slightly less reducing compared to that of exponentially growing cells, implying that the metabolic activity imperceptibly declined as cells were aged. These results will be helpful to understand the details of yeast cell viability at exponential and stationary growth phases.

Empirical Bayes Test for the Exponential Parameter with Censored Data

  • Wang, Lichun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.213-228
    • /
    • 2008
  • Using a linear loss function, this paper considers the one-sided testing problem for the exponential distribution via the empirical Bayes(EB) approach. Based on right censored data, we propose an EB test for the exponential parameter and obtain its convergence rate and asymptotic optimality, firstly, under the condition that the censoring distribution is known and secondly, that it is unknown.

Valuation of American Option Prices Under the Double Exponential Jump Diffusion Model with a Markov Chain Approximation (이중 지수 점프확산 모형하에서의 마코브 체인을 이용한 아메리칸 옵션 가격 측정)

  • Han, Gyu-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.249-253
    • /
    • 2012
  • This paper suggests a numerical method for valuation of American options under the Kou model (double exponential jump diffusion model). The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the conventional numerical method, the finite difference method for PIDE (partial integro-differential equation).

ORBITAL LIPSCHITZ STABILITY AND EXPONENTIAL ASYMPTOTIC STABILITY IN DYNAMICAL SYSTEMS

  • Kim, Jong-Myung;Kye, Young-Hee;Lee, Keon-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.449-463
    • /
    • 1998
  • In this paper we introduce the notions of orbital Lipschitz stability (in variation) and orbital exponential asymptotic stability (in variation) of $C^{r}$ dynamical systems (or $C^{r}$ diffeomor-phisms) on Riemannian manifolds, and study the embedding problem of those concepts in $C^{r}$ dynamical systems.stems.

  • PDF

Bayesian Prediction Analysis for the Exponential Model Under the Censored Sample with Incomplete Information

  • Kim, Yeung-Hoon;Ko, Jeong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2002
  • This paper deals with the problem of obtaining the Bayesian predictive density function and the prediction intervals for a future observation and the p-th order statistics of n future observations for the exponential model under the censored sampling with incomplete information.

  • PDF