Browse > Article
http://dx.doi.org/10.5806/AST.2022.35.4.181

Comparative analysis of yeast cell viability at exponential and stationary growth phases  

An, Yejin (Department of Plant & Biomaterials Science, College of Natural Sciences, Gyeongsang National University)
Jo, Nayoon (Department of Plant & Biomaterials Science, College of Natural Sciences, Gyeongsang National University)
Kim, Hyeji (Department of Plant & Biomaterials Science, College of Natural Sciences, Gyeongsang National University)
Nam, Dahye (Department of Plant & Biomaterials Science, College of Natural Sciences, Gyeongsang National University)
Son, Woorim (Department of Plant & Biomaterials Science, College of Natural Sciences, Gyeongsang National University)
Park, Jinkyu (Department of Plant & Biomaterials Science, College of Natural Sciences, Gyeongsang National University)
Publication Information
Analytical Science and Technology / v.35, no.4, 2022 , pp. 181-188 More about this Journal
Abstract
This paper describes a comparative analysis of yeast cell viability at exponential and stationary growth phases using multiple conventional techniques and statistical tools. Overall, cellular responses to various viability assays were asynchronous. Results of optical density measurement and direct cell counting were asynchronous both at exponential and stationary phases. Proliferative capacity measurement using SP-SDS indicated that cells at the end of the stationary phase were proliferative as much as exponentially growing cells. Metabolic activity assays using two different dyes concluded that the inside of cells at stationary phase is slightly less reducing compared to that of exponentially growing cells, implying that the metabolic activity imperceptibly declined as cells were aged. These results will be helpful to understand the details of yeast cell viability at exponential and stationary growth phases.
Keywords
yeast; cell viability; exponential phase; stationary phase; proliferative capacity; metabolic activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Valter D. Longo, Gerald S. Shadel, M. Kaeberlein and B. Kennedy, Cell Metabolism, 16(1), 18-31 (2012).   DOI
2 G. H. Markx, C. L. Davey, and D. B. Kell, Journal of General Microbiology, 137(4), 735-743 (1991).   DOI
3 P. J. Costello and P. R. Monk, Applied and Environmental Microbiology, 49(4), 863-866 (1985).   DOI
4 D. M. Kuhn, M. Balkis, J. Chandra, P. K. Mukherjee and M. A. Ghannoum, J Clin Microbiol, 41(1), 506-508 (2003).   DOI
5 R. Lopez-Amoros, J. Comas and J. Vives-Rego, Applied and Environmental Microbiology, 61(7), 2521-2526 (1995).   DOI
6 J. R. Broach, Genetics, 192(1), 73-105 (2012).   DOI
7 R. Loewith and M. N. Hall, Genetics, 189(4), 1177-1201 (2011).   DOI
8 Y. Sun, R. Yu, H.-B. Guo, H. Qin and W. Dang, GeroScience, 43(5), 2573-2593 (2021).   DOI
9 M. Hotz, N. H. Thayer, D. G. Hendrickson, E. L. Schinski, J. Xu and D. E. Gottschling, Proceedings of the National Academy of Sciences, 119(15), e2119593119 (2022).   DOI
10 K. Chamchoy, D. Pakotiprapha, P. Pumirat, U. Leartsakulpanich and U. Boonyuen, BMC Biochemistry, 20(1), 4 (2019).   DOI
11 R. Margesin, Extremophiles, 13(2), 257-262 (2009).   DOI
12 M. Kaeberlein, R. W. Powers Iii, K. K. Steffen, E. A. Westman, D. Hu, N. Dang, E. O. Kerr, K. T. Kirkland, S. Fields and B. K. Kennedy, Science, 310(5751), 1193-1196(2005).   DOI
13 A.-C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L. J. Jensen, S. Bastuck, B. Dumpelfeld, A. Edelmann, M.-A. Heurtier, V. Hoffman, C. Hoefert, K. Klein, M. Hudak, A.-M. Michon, M. Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer, J. M. Rick, B. Kuster, P. Bork, R. B. Russell and G. Superti-Furga, Nature, 440(7084), 631-636 (2006).   DOI
14 G. Cazzanelli, F. Pereira, S. Alves, R. Francisco, L. Azevedo, P. Dias Carvalho, A. Almeida, M. Corte-Real, M. J. Oliveira, C. Lucas, M. J. Sousa and A. Preto, Cells, 7(2), 14 (2018).   DOI
15 N. Nagaraj, N. Alexander Kulak, J. Cox, N. Neuhauser, K. Mayr, O. Hoerning, O. Vorm and M. Mann, Molecular & Cellular Proteomics, 11(3), M111.013722 (2012).
16 J. W. Messer, E. W. Rice and C. H. Johnson (1999).
17 J. Forster, I. Famili, P. Fu, B. O. Palsson and J. Nielsen, Genome Research, 13(2), 244-253 (2003).   DOI
18 S. Ostergaard, L. Olsson and J. Nielsen, Microbiology and Molecular Biology Reviews, 64(1), 34-50 (2000).   DOI
19 M. Kwolek-Mirek and R. Zadrag-Tecza, FEMS Yeast Research, 14(7), 1068-1079 (2014).   DOI
20 K. Painting and B. Kirsop, World Journal of Microbiology and Biotechnology, 6(3), 346-347 (1990).   DOI
21 M. Eigenfeld, R. Kerpes and T. Becker, Frontiers in Fungal Biology, 2, Article# 665490 (2021).
22 J. Park, S. P. McCormick, M. Chakrabarti and P. A. Lindahl, Biochemistry, 52(52), 9413-9425 (2013).   DOI
23 P. Thomas, A. C. Sekhar, R. Upreti, M. M. Mujawar and S. S. Pasha, Biotechnology Reports, 8, 45-55 (2015).   DOI