• Title/Summary/Keyword: explicit equations

Search Result 289, Processing Time 0.021 seconds

A NOTE ON EXPLICIT SOLUTIONS OF CERTAIN IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.159-164
    • /
    • 2017
  • This paper deals with linear impulsive differential equations involving the Caputo fractional derivative. We provide exact solutions of nonhomogeneous linear impulsive fractional differential equations with constant coefficients by means of the Mittag-Leffler functions.

DIFFERENTIAL EQUATIONS CONTAINING 2-VARIABLE MIXED-TYPE HERMITE POLYNOMIALS

  • J.Y. KANG
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.687-696
    • /
    • 2023
  • In this paper, we introduce the 2-variable mixed-type Hermite polynomials and organize some new symmetric identities for these polynomials. We find induced differential equations to give explicit identities of these polynomials from the generating functions of 2-variable mixed-type Hermite polynomials.

AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD (내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자)

  • Baek, C.;Kim, M.;Choi, S.;Lee, S.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng;Huang, Huan;Ma, Haitao;Xu, Rui
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.119-139
    • /
    • 2014
  • A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

Basic Equations for Explicit Design of Uniformly Rough Pipe (균일조도관의 양해법 설계 기준식)

  • 유동훈
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.175-189
    • /
    • 1995
  • Pipe design normally requires pump power, discharge rate or pipe diameter for each condition given. Due to several investigators the pipe friction factor can now be estimated by explicit way when the flow condition is provided. In various problems of pipe design, however, the flow condition cannot be pre-determined even for the uniformly rough pipe. In these cases a lot of iterations are often required to have an accurate solution with ordinary approach. This paper presents the explicit way of estimating the discharge rate and pipe diameter without any iteration process being related to non-dimensional physical numbers, power-diameter number, power-discharge number, and discharge-slope number, which enable to develop explicit forms of equations.

  • PDF

WEAKLY STOCHASTIC RUNGE-KUTTA METHOD WITH ORDER 2

  • Soheili, Ali R.;Kazemi, Zahra
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.135-149
    • /
    • 2008
  • Many deterministic systems are described by Ordinary differential equations and can often be improved by including stochastic effects, but numerical methods for solving stochastic differential equations(SDEs) are required, and work in this area is far less advanced than for deterministic differential equations. In this paper,first we follow [7] to describe Runge-Kutta methods with order 2 from Taylor approximations in the weak sense and present two well known Runge-Kutta methods, RK2-TO and RK2-PL. Then we obtain a new 3-stage explicit Runge-Kutta with order 2 in weak sense and compare the numerical results among these three methods.

  • PDF

A LOCAL-GLOBAL STEPSIZE CONTROL FOR MULTISTEP METHODS APPLIED TO SEMI-EXPLICIT INDEX 1 DIFFERENTIAL-ALGEBRAIC EUATIONS

  • Kulikov, G.Yu;Shindin, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.697-726
    • /
    • 1999
  • In this paper we develop a now procedure to control stepsize for linear multistep methods applied to semi-explicit index 1 differential-algebraic equations. in contrast to the standard approach the error control mechanism presented here is based on monitoring and contolling both the local and global errors of multistep formulas. As a result such methods with the local-global stepsize control solve differential-algebraic equation with any prescribed accuracy (up to round-off errors). For implicit multistep methods we give the minimum number of both full and modified Newton iterations allowing the iterative approxima-tions to be correctly used in the procedure of the local-global stepsize control. We also discuss validity of simple iterations for high accuracy solving differential-algebraic equations. Numerical tests support the the-oretical results of the paper.