• Title/Summary/Keyword: experimental techniques

Search Result 3,187, Processing Time 0.031 seconds

Effect Analysis of Data Imbalance for Emotion Recognition Based on Deep Learning (딥러닝기반 감정인식에서 데이터 불균형이 미치는 영향 분석)

  • Hajin Noh;Yujin Lim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.235-242
    • /
    • 2023
  • In recent years, as online counseling for infants and adolescents has increased, CNN-based deep learning models are widely used as assistance tools for emotion recognition. However, since most emotion recognition models are trained on mainly adult data, there are performance restrictions to apply the model to infants and adolescents. In this paper, in order to analyze the performance constraints, the characteristics of facial expressions for emotional recognition of infants and adolescents compared to adults are analyzed through LIME method, one of the XAI techniques. In addition, the experiments are performed on the male and female groups to analyze the characteristics of gender-specific facial expressions. As a result, we describe age-specific and gender-specific experimental results based on the data distribution of the pre-training dataset of CNN models and highlight the importance of balanced learning data.

Design and Implementation of Evacuation Simulation of Indoor Environment Fire (건물 내에서 화재시의 대피 시뮬레이션 설계 및 구현)

  • Jang, Byeong-Ok
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • With recent development of computer hardware and 3D graphic technique, a lot of people have concern for something to express as the 3D graphic that look the real environment. Because the request of users have increased, the 3D simulation is developed and popularized in the many field. In this paper, we design and implement the simulation system that humans evacuate a building fires using the 3D graphic techniques. In this paper, we use the A* algorithm to humans have the artificial intelligence at evacuating a building fires, calculate the evacuation speed of each human considering temperature damage and smoke damage. In this paper, we applied the real building to demonstrate the effect of proposed evacuation simulation. Experimental results showed that the evacuation speed is affected by the temperature condition and the smoke density.

Visual Tracking Technique Based on Projective Modular Active Shape Model (투영적 모듈화 능동 형태 모델에 기반한 영상 추적 기법)

  • Kim, Won
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.77-89
    • /
    • 2009
  • Visual tracking technique is one of the essential things which are very important in the major fields of modern society. While contour tracking is especially necessary technique in the aspect of its fast performance with target's external contour information, it sometimes fails to track target motion because it is affected by the surrounding edges around target and weak egdes on the target boundary. To overcome these weak points, in this research it is suggested that PDMs can be obtained by generating the virtual 6-DOF motions of the mobile robot with a CCD camera and the image tracking system which is robust to the local minima around the target can be configured by constructing Active Shape Model in modular base. To show the effectiveness of the proposed method, the experiment is performed on the image stream obtained by a real mobile robot and the better performance is confirmed by comparing the experimental results with the ones of other major tracking techniques.

Comparison of Effects of Taping Methods on Menstrual Pain, Menstrual Symptoms, and Body Temperature in Women of Reproductive Age (테이핑 기법에 따른 가임기 여성의 월경통, 월경 증상 및 체온에 미치는 영향 비교)

  • Eun-jin Lee;Jae-myoung Park;Tae-sung In;Kyoung-sim Jung
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Background: The aim of this study was to compare the effects of taping techniques on menstrual pain, body temperature, and menstrual symptoms in women of reproductive age. Methods: This study targeted 40 female students enrolled at G university with menstrual pain rated above 5 on the visual analog scale (VAS). The participants were randomly assigned to four groups: the Kinesio taping, spiral taping, non-steroidal anti-inflammatory drug, and control groups. The intervention was applied one day after the onset of menstruation, and menstrual pain, menstrual symptoms, and body temperature were measured before the intervention and 24 hours after the intervention application. We measured menstrual pain using the VAS. Additionally, we evaluated menstrual symptoms using the menstruation symptom scale and measured body temperature of the abdomen and feet using digital infrared thermal imaging. Results: After the intervention, all three experimental groups showed significant improvement in menstrual pain and menstrual symptoms compared to the control group, and there was no significant difference among the three groups. After applying Kinesio taping, there was a slight decrease in the temperature difference between the abdomen and feet, but no statistically significant difference was observed. Conclusion: The results of this study demonstrated that kisesio and spiral taping have similar effects as with anti-inflammatory medication in relieving menstrual pain and menstrual symptoms. Taping can be considered as an effective method to replace medications in order to alleviate menstrual pain.

  • PDF

Temporal changes of periodontal tissue pathology in a periodontitis animal model

  • Hyunpil Yoon;Bo Hyun Jung;Ki-Yeon Yoo;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.4
    • /
    • pp.248-258
    • /
    • 2023
  • Purpose: This study aimed to characterize the early stages of periodontal disease and determine the optimal period for its evaluation in a mouse model. The association between the duration of ligation and its effect on the dentogingival area in mice was evaluated using micro-computed tomography (CT) and histological analysis. Methods: Ninety mice were allocated to an untreated control group or a ligation group in which periodontitis was induced by a 6-0 silk ligation around the left second maxillary molar. Mice were sacrificed at 1, 2, 3, 4, 5, 8, 11, and 14 days after ligature placement. Alveolar bone destruction was evaluated using micro-CT. Histological analysis was performed to assess the immune-inflammatory processes in the periodontal tissue. Results: No significant difference in alveolar bone loss was found compared to the control group until day 3 after ligature placement, and a gradual increase in alveolar bone loss was observed from 4 to 8 days following ligature placement. No significant between-group differences were observed after 8 days. The histological analysis demonstrated that the inflammatory response was evident from day 4. Conclusions: Our findings in a mouse model provide experimental evidence that ligature-induced periodontitis models offer a consistent progression of disease with marginal attachment down-growth, inflammatory infiltration, and alveolar bone loss.

Analysis of Latency and Computation Cost for AES-based Whitebox Cryptography Technique (AES 기반 화이트박스 암호 기법의 지연 시간과 연산량 분석)

  • Lee, Jin-min;Kim, So-yeon;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.115-117
    • /
    • 2022
  • Whitebox encryption technique is a method of preventing exposure of encryption keys by mixing encryption key information with a software-based encryption algorithm. Whitebox encryption technique is attracting attention as a technology that replaces conventional hardware-based security encryption techniques by making it difficult to infer confidential data and keys by accessing memory with unauthorized reverse engineering analysis. However, in the encryption and decryption process, a large lookup table is used to hide computational results and encryption keys, resulting in a problem of slow encryption and increased memory size. In particular, it is difficult to apply whitebox cryptography to low-cost, low-power, and light-weight Internet of Things products due to limited memory space and battery capacity. In addition, in a network environment that requires real-time service support, the response delay time increases due to the encryption/decryption speed of the whitebox encryption, resulting in deterioration of communication efficiency. Therefore, in this paper, we analyze whether the AES-based whitebox(WBC-AES) proposed by S.Chow can satisfy the speed and memory requirements based on the experimental results.

  • PDF

Uncertainty Sequence Modeling Approach for Safe and Effective Autonomous Driving (안전하고 효과적인 자율주행을 위한 불확실성 순차 모델링)

  • Yoon, Jae Ung;Lee, Ju Hong
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.9-20
    • /
    • 2022
  • Deep reinforcement learning(RL) is an end-to-end data-driven control method that is widely used in the autonomous driving domain. However, conventional RL approaches have difficulties in applying it to autonomous driving tasks due to problems such as inefficiency, instability, and uncertainty. These issues play an important role in the autonomous driving domain. Although recent studies have attempted to solve these problems, they are computationally expensive and rely on special assumptions. In this paper, we propose a new algorithm MCDT that considers inefficiency, instability, and uncertainty by introducing a method called uncertainty sequence modeling to autonomous driving domain. The sequence modeling method, which views reinforcement learning as a decision making generation problem to obtain high rewards, avoids the disadvantages of exiting studies and guarantees efficiency, stability and also considers safety by integrating uncertainty estimation techniques. The proposed method was tested in the OpenAI Gym CarRacing environment, and the experimental results show that the MCDT algorithm provides efficient, stable and safe performance compared to the existing reinforcement learning method.

Comparative Analysis of Machine Learning Techniques for IoT Anomaly Detection Using the NSL-KDD Dataset

  • Zaryn, Good;Waleed, Farag;Xin-Wen, Wu;Soundararajan, Ezekiel;Maria, Balega;Franklin, May;Alicia, Deak
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.46-52
    • /
    • 2023
  • With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.

Long Short-Term Memory Neural Network assisted Peak to Average Power Ratio Reduction for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communication

  • Waleed, Raza;Xuefei, Ma;Houbing, Song;Amir, Ali;Habib, Zubairi;Kamal, Acharya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.239-260
    • /
    • 2023
  • The underwater acoustic wireless communication networks are generally formed by the different autonomous underwater acoustic vehicles, and transceivers interconnected to the bottom of the ocean with battery deployed modems. Orthogonal frequency division multiplexing (OFDM) has become the most popular modulation technique in underwater acoustic communication due to its high data transmission and robustness over other symmetrical modulation techniques. To maintain the operability of underwater acoustic communication networks, the power consumption of battery-operated transceivers becomes a vital necessity to be minimized. The OFDM technology has a major lack of peak to average power ratio (PAPR) which results in the consumption of more power, creating non-linear distortion and increasing the bit error rate (BER). To overcome this situation, we have contributed our symmetry research into three dimensions. Firstly, we propose a machine learning-based underwater acoustic communication system through long short-term memory neural network (LSTM-NN). Secondly, the proposed LSTM-NN reduces the PAPR and makes the system reliable and efficient, which turns into a better performance of BER. Finally, the simulation and water tank experimental data results are executed which proves that the LSTM-NN is the best solution for mitigating the PAPR with non-linear distortion and complexity in the overall communication system.

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.