과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047113).
참고문헌
- Q. Lin, R. He, and P. Jiang, "Feature guided CNN for Baby's facial expression recognition," Hindawi Complexity, Vol. 2020, pp.1-10, 2020. https://doi.org/10.1155/2020/8855885
- V. LoBue and C. Thrasher, "The Child Affective Facial Expression (CAFE) set: Validity and reliability from untrained adults," Frontiers in Psychology, Vol.5, pp.1-8, 2015. https://doi.org/10.3389/fpsyg.2014.01532
- The Child Affective Facial Expression (CAFE) Set. Databrary, http://doi.org/10.17910/B7301K.
- H. L. Egger, D. S. Pine, E. Nelson, E. Leibenluft, M. Ernst, K. E. Towbin, and A. Angold, "The NIMH Child Emotional Faces Picture Set (NIMH-ChEFS): A new set of children's facial emotion stimuli," International Journal of Methods in Psychiatric Research, Vol.20, No.3, pp.145-156, 2011. https://doi.org/10.1002/mpr.343
- H. Noh and Y. Lim, Proceedings of the Annual Conference of Korea Information Processing Society Conference (KIPS) 2022, Vol.29, No.2, pp.700-702, 2022.
- H. Jung et al., "Development of deep learning-based facial expression recognition system," 2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), Mokpo, Korea (South), pp.1-4, 2015.
- A. Fathallah, L. Abdi, and A. Douik, "Facial expression recognition via deep learning," 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, pp.745-750, 2017.
- A. Mollahosseini, D. Chan, and M. H. Mahoor, "Going deeper in facial expression recognition using deep neural networks," 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, pp. 1-10, 2016.
- D. K. Jain, P. Shamsolmoali, and P. Sehdev, "Extended deep neural network for facial emotion recognition," Pattern Recognition Letters, Vol.120, pp.69-74, 2019. https://doi.org/10.1016/j.patrec.2019.01.008
- R. A. Khan, A. Crenn, A. Meyer, and S. Bouakaz, "A novel database of children's spontaneous facial expressions (LIRIS-CSE)," Image and Vision Computing, Vol.83-84, pp. 61-69, 2019. https://doi.org/10.1016/j.imavis.2019.02.004
- T. A. Araf, A. Siddika, S. Karimi, and M. G. R. Alam, "Real-time face emotion recognition and visualization using Grad-CAM," International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, Bhilai, India, pp.21-22, 2022.
- M. Rathod et al., "Kids' Emotion Recognition Using Various Deep-Learning Models with Explainable AI," Sensors (Basel), Vol.22, No.20, pp.8066, 2022.
- M. Deramgozin, S. Jovanovic, H. Rabah, and N. Ramzan, "A hybrid explainable ai framework applied to global and local facial expression recognition," IEEE International Conference on Imaging Systems and Techniques, Kaohsiung, Taiwan, pp.24-26, 2021.
- C. Manresa-Yee and S. Ramis, "Assessing gender bias in predictive algorithms using eXplainable AI", XXI International Conference on Human Computer Interaction, Malaga Spain, pp.22-24, 2021.
- HSEmotion (High-Speed face Emotion recognition) library [Internet], https://github.com/HSE-asavchenko/face-emotion-recognition.
- Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, "VGGFace2: A dataset for recognising faces across pose and age," 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi'an, China, pp.67-74, 2018.