• Title/Summary/Keyword: experimental mechanics

Search Result 1,873, Processing Time 0.026 seconds

Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations

  • Lee, Jin-Uk;Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.862-868
    • /
    • 2012
  • Based on the recently derived general expression for the rates of diffusion-controlled reactions, we calculate the rates of dismutation of the superoxide anion radical catalyzed by Cu/Zn superoxide dismutases (SOD). This is the first attempt to calculate the absolute rates of diffusion-controlled enzyme reactions based on the atomiclevel molecular dynamics simulations. All solvent molecules are included explicitly and the effects of the structural flexibility of enzyme, especially those of side chain motions near the active site, are included in the present calculation. In addition, the actual mobility of the substrate molecule is taken into account, which may change as the molecule approaches the active site of enzyme from the bulk solution. The absolute value of the rate constant for the wild type SOD reaction obtained from MD simulation is shown to be in good agreement with the experimental value. The calculated reactivity of a mutant SOD is also in agreement with the experimental result.

Study on the Frictional Characteristics of Micro-particles for Tribological Application (미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰)

  • Sung, In-Ha;Han, Hung-Gu;Kong, Ho-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

Cracking Analysis of Reinforced Concrete Tension Members with Concrete Fracture Mechanics (콘크리트 파괴역학을 이용한 철근콘크리트 인장부재의 균열성장 해석)

  • 홍창우;윤경구;양성철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • A fracture energy concept proposed by Ouyang and Shah's fracture mechanics approach was used to predict cracking of reinforced concrete members subjected to tension. In this approach, fracture properties in plain concrete which incorporate the presence of the fracture process zone are first determined from the generalized size effect method, then fracture energy required for crack propagation with the same dimension and material properties are evaluated using an R-curve. Subsequently taking into account the material properties in Ouyang and Shah's approach, a theoretical analysis to predict the mechanical behavior of reinforced concrete members subjected to tension was performed and compared to observed experimental results. It is seen that the predicted average crack spacing curves agree well with the experimental results, whereas the analytical method seems to predict lower values for this study. The analytical approach predicts well responses of stress-strain curves before and after the first crack is formed. It is concluded from this study that a fracture energy concept based on the R-curve and the generalized size effect method is a rational approach to predict cracking of reinforced concrete members subjected to tension.

A Plastic-Damage Model for Lightweight Concrete and Normal Weight Concrete

  • Koh, C.G.;Teng, M.Q.;Wee, T.H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.123-136
    • /
    • 2008
  • A new plastic-damage constitutive model applicable to lightweight concrete (LWC) and normal weight concrete (NWC) is proposed in this paper based on both continuum damage mechanics and plasticity theories. Two damage variables are used to represent tensile and compressive damage independently. The effective stress is computed in the Drucker-Prager multi-surface plasticity framework. The stress is then computed by multiplication of the damaged part and the effective part. The proposed model is coded as a user material subroutine and incorporated in a finite element analysis software. The constitutive integration algorithm is implemented by adopting the operator split involving elastic predictor, plastic corrector and damage corrector. The numerical study shows that the algorithm is efficient and robust in the finite element analysis. Experimental investigation is conducted to verify the proposed model involving both static and dynamic tests. The very good agreement between the numerical results and experimental results demonstrates the capability of the proposed model to capture the behaviors of LWC and NWC structures for static and impact loading.

Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature

  • Feng, Liuyang;Qian, Xudong
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.777-792
    • /
    • 2019
  • This paper presents a new efficient approach to estimate the S-N type fatigue life assessment curve for S550 high strength steels under low-cycle actions at -60℃. The proposed approach combines a single set of monotonic tension test and one set of fatigue tests to determine the key material damage parameters in the continuum damage mechanics framework. The experimental program in this study examines both the material response under low-cycle actions. The microstructural mechanisms revealed by the Scanning Electron Microscopy (SEM) at the low temperature, furthermore, characterizes the effect due to different strain ratios and low temperature on the low-cycle fatigue life of S550 steels. Anchored on the experimental results, this study validates the S-N curve determined from the proposed approach. The S-N type curve determined from one set of fatigue tests and one set of monotonic tension tests estimates the fatigue life of all specimens under different strain ratios satisfactorily.

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.

A Case Study on Combustion Instability of a Model Lean Premixed Gas Turbine Combustor with Open Source Code OSCILOS (온라인 개방코드 OSCILOS를 이용한 모델 희박 예혼합 가스터빈 연소기의 연소불안정 해석 사례)

  • Cha, Dong Jin;Song, Jin Kwan;Lee, Jong Geun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.10-18
    • /
    • 2015
  • Combustion instability is a major issue in design and maintenance of gas turbine combustors for efficient operation with low emissions. With the thermoacoustic view point the instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to study the combustion dynamics of gas turbine combustors, Morgans et al (2014) have developed OSCILOS (open source combustion instability low order simulator) code and it is currently available online. In this study the code has been utilized to predict the combustion instability of a reported case for lean premixed gas turbine combustion, and then its prediction results have been compared with the corresponding experimental data. It turned out that both the predicted and the experimental combustion instability results agree well. Further the effects of some typical inlet acoustic boundary conditions on the prediction have been investigated briefly. It is believed that the validity and effectiveness of the open source code is reconfirmed through this benchmark test.

Integrated Simulation Modeling of Business, Maintenance and Production Systems for Concurrent Improvement of Lead Time, Cost and Production Rate

  • Paknafs, Bahman;Azadeh, Ali
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.403-431
    • /
    • 2016
  • The objective of this study is to integrate the business, maintenance and production processes of a manufacturing system by incorporating errors. First, the required functions are estimated according to the historical data. The system activities are simulated by Visual SLAM software and the required outputs are obtained. Several outputs including lead times in different dimensions, total cost and production rates are computed through simulation. Finally, data envelopment analysis (DEA) is utilized in order to select the best option between the defined scenarios due to the multi-criteria feature of the problem. This is the first study in which the lead times, cost and production rates are simultaneously considered in the integrated system imposed of business, maintenance and production processes by incorporating errors. In the current study, the major bottlenecks of the system being studied are identified and suggested different strategies to improve the system and make the best decision.

Fatigue laboratory tests toward the design of SMA portico-braces

  • Carreras, G.;Casciati, F.;Casciati, S.;Isalgue, A.;Marzi, A.;Torra, V.
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.41-57
    • /
    • 2011
  • A deeper understanding of the effectiveness of adopting devices mounting shape memory alloy (SMA) elements in applications targeted to the mitigation of vibrations is pursued via an experimental approach. During a seismic event, less than 1000 loading-unloading cycles of the alloy are required to mitigate the earthquake effects. However, the aging effects during the time of inactivity prior to the oscillations (several decades characterized by the yearly summer-winter temperature wave) should be considered in order to avoid and/or minimize them. In this paper, the results obtained by carrying out, in different laboratories, fatigue tests on SMA specimens are compared and discussed. Furthermore, the effects of seismic events on a steel structure, with and without SMA dampers, are numerically simulated using ANSYS. Under an earthquake excitation, the SMA devices halve the oscillation amplitudes and show re-centering properties. To confirm this result, an experimental campaign is conducted by actually installing the proposed devices on a physical model of the structure and by evaluating their performance under different excitations induced by an actuator.

Development of a Web-Based Soil Laboratory (인터넷을 이용한 가상 토질 실험실)

  • Lee, Kyu-Hwan;Lee, Song;Jung, Dae-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.445-452
    • /
    • 2002
  • In the field of civil and geotechnical engineering, students conduct a variety of soil tests to fulfill undergraduate soil mechanics course requirement. There is a range of problems in soil laboratory instruction, such as, some students not getting hands on experience of conducting tests because of inadequate number of apparatus, time constraints and inability in exciting students to seriously conduit the experiments, However when these laboratory soil tests are simulated with multimedia interaction ann visualization techniques, the students conceptual understanding of soil mechanics is enhanced. The simulation program for website teaching is a computer based instructional package intended to complement, and potentially replace, some physical testing in a real soil laboratory. The overall aim of this project is to develop an experimental simulation program toward active learning and development of critical thinking skills, including data interpretation, understanding of the precesses and influential factors, and problem solving. Therefore enable students to access website to team experimental procedure at any time or place.

  • PDF