Integrated Simulation Modeling of Business, Maintenance and Production Systems for Concurrent Improvement of Lead Time, Cost and Production Rate

Bahman Paknafs*, Ali Azadeh
School of Industrial Engineering and Centre of Excellence for Intelligent Based Experimental Mechanics, College of Engineering, University of Tehran, Tehran, Iran

(Received: October 2, 2016 / Accepted: November 29, 2016)

Abstract

The objective of this study is to integrate the business, maintenance and production processes of a manufacturing system by incorporating errors. First, the required functions are estimated according to the historical data. The system activities are simulated by Visual SLAM software and the required outputs are obtained. Several outputs including lead times in different dimensions, total cost and production rates are computed through simulation. Finally, data envelopment analysis (DEA) is utilized in order to select the best option between the defined scenarios due to the multicriteria feature of the problem. This is the first study in which the lead times, cost and production rates are simultaneously considered in the integrated system imposed of business, maintenance and production processes by incorporating errors. In the current study, the major bottlenecks of the system being studied are identified and suggested different strategies to improve the system and make the best decision.

Keywords: Production Process, Business Process, Cost Estimation; Human Error, Maintenance Policy

* Corresponding Author, E-mail: bahman_paknafs@ut.ac.ir

1. INTRODUCTION

Nowadays, the manufacturing companies need to adopt appropriate strategies to stay productive and profitable in the global competition market. The ubiquitous strategies are to minimize costs and lead times and maximize production rates. It is clear that minimizing the total cost results in more profit. In addition, minimizing the lead time leads to the customer satisfaction as well as increased production rates in a particular time period. The current study considers the integrated system imposed of business, maintenance and production processes by incorporating human error and machine error to minimize total cost and lead times and maximize production rates,
simultaneously. It should be also given out that the complexity of the model will be intensified when the realistic assumptions are considered to be the model close to the real system. Thus, the other analytical models are either inefficient or insolvable in a reasonable period. But, the simulation model can be used to replace the actual system in order to analyze and improve the system. Unique feature of this study is to consider all the mentioned factors, simultaneously.

2. LITERATURE REVIEW

In the literature, the maintenance, production, busi-
ness, error, cost, lead time and production rate have been individually investigated from different points of view. Also, some studies have attempted to combine some of them.

Chen and Papazafeiropouloa (2013) have investigated the supply chain integration in the Taiwan information technology industry. The aim of their study has been to explore how the suppliers adopt integration technology and improve efficiency of their organizations. Hashemi et al. (2014) have designed an integer linear programming model to minimize energy costs for the factory. Jahangirian et al. (2010) have reviewed the simulation applications in manufacturing and business according to peer-reviewed literature from 1997 to 2006. Their study reveals the raised trends in hybrid modeling in order to solve complicated problems. The integration of the production process, information system and business process has been investigated by Azadeh et al. (2008). They have attempted to evaluate the customer waiting times in different dimensions by using simulation modeling in the integrated system. The relationship between business and maintenance policies has been surveyed by Pinjala et al. (2006). They have considered about 150 companies in Belgium and several in Netherlands to authenticate their study. Oke and Charles-Owaba (2007) have presenteda model to schedule both operational activities and preventive maintenance by considering the uncertainty. They have applied the fuzzy logic to do this. Azadeh et al. (2012) have presented an approach to diagnose, simulate and improve the business process from a viewpoint of cybernetic. Kjaer (2003) has attempted to integrate the business and production processes. Roux et al. (2008) have analyzed the maintenance policies performances with random parameters by integrating the optimization algorithms and the simulation methods. The activities of business processes have been compared with manufacturing processes by Yelling and Machulack (1996). Law et al. (2010) have addressed post-implementation requirements to adopt successful enterprise resource planning (ERP). They have employed a case study approach to identify the critical success factors of ERP adoption.

Bouvard et al. (2011) have attempted to present a method to optimize the maintenance planning as well as grouping the dynamic maintenance operations. The main objective of their research has been to decrease the total maintenance cost. An integrated framework for costing availability type service contracts has been presented by Datta and Roy (2010). They have done this by focusing on the structured literature review and practice. Gulledge et al. (2010) have tried to integrate the product lifecycle management (PLM) and the condition-based maintenance (CBM). The integration has been done by employing composite applications in their paper. Kim and Park (2012) have proposed four human error analysis procedures to reduce test or maintenance (T\&M) human errors. They have focused on task characteristics and work conditions to present procedures. Heo and Park
(2010) have proposed a framework to evaluate the effects of human errors occurred in maintenance tasks of nuclear power plants. Azadeh et al. (2013) have proposed a new simulation-DEA approach to optimize maintenance policy and planning by incorporating learning effects. Azadeh et al. (2008) have presented an integrated simulation, multivariate analysis and multiple decision analysis to improve and optimize the railway system.

Liu et al. (2009) have presented a model to estimate human error cost in manufacturing environment. A model in order to simulate the human errors under different situations has been developed by Jin et al. (2003). Rooney et al. (2002) have investigated to reduce human error by determining root causes of errors. Kirwan (1992) has reviewed the available techniques of human error identification in human-machine systems.

According to the literature, there is no research to integrate the maintenance, production and business processes by incorporating errors. This paper fills the gap with the objective of minimizing cost and lead times and maximizing production rates, concurrently.

3. METHODOLOGY

As previously mentioned, the objective of this study is to present a computer simulation-DEA approach to integrate the production, maintenance and business process by incorporating errors. In addition, lead times, cost and production rates are considered as the evaluating criteria.

The overall goals of this research are summarized as follows:

1) Minimizing lead times in different dimensions (this study: 12 dimensions)
2) Maintaining or increasing the reliability of equipment
3) Identifying the major bottlenecks of the business process
4) obtaining the proper working hours
5) Reducing the errors
6) Maximizing the production rates (this study: 8 products)
7) Minimizing the total cost

According to the proposed approach, several techniques namely interview, questionnaire, visual observation, company's documents, and working standards and methods are used to collect data-set and understand the current situation of the system. The goodness of fit test is then used to estimate the functions. Selecting the best fitting distributions are done by STATISCA ${ }^{\circledR}$ and EASY FIT^{\circledR}. In the next step, the maintenance, production, business process and errors are simulated by the SLAM network. The simulation model is run and then verified and validated. Afterwards, various scenarios are defined and obtained the lead time in different dimensions, cost and production rates by simulation outputs. Consequen-

Figure 1. Research process.
tly, data envelopment analysis (DEA) is used to rank the various scenarios and select the best. Figure 1 shows a simple scheme of the research process.

It should be pointed out that the situation similar to the scenario is used to analyze the system when some inputs might be changed. For instance, the error rate change by changing the working hour. That is to say more working hour is caused more error as a result of more fatigue. In this case, a good estimation of the error rate is to use the collected error's data for the required hour (for less working hours).

4. CASE STUDY

A small order-based powder coating manufacturer is considered as the case study. The company uses three parallel machines to produce eight different coatings. The product request, sample request and complaint about a special product are three possible reasons to contact the company by the customers. The requests (local or out of state) are received through the general manager or deputy. If the request has been received through the deputy, the deputy transmits it to the general manager and customers follow their requests through the deputy.

Data flow diagrams (DFDs) presented in Figures 2 and 3explain the case study in which the corresponding numbers indicate the sequence of activities.

5. INTEGRATED SIMULATION

As previously mentioned, the Visual SLAM is used to simulate the model of system (Pritsker et al., 1989;

Pritsker, 1990; Pritsker et al., 1997; Goldsman et al., 1999).
In order to simulate the integrated system, first, data flow diagrams have been drawn for modules and the modules are then simulated by the Visual SLAM network. These modules are including the arrival of requests to the company and customer complaint, production, sample request, maintenance (there is no preventive maintenance in the current system), manager interaction with the external entities (interaction might be related to their relationship with out of the organization or they might take a little time to rest and etc), working shift and errors [1. human error 2. machine error and 3. error caused to clean the equipment that the first and second errors exist in two forms: 1. caused to a complete failure product (waste material) 2. caused to a semi-failure product (return to the production line)]. The mentioned modules are linked each other through the business process module simulation. Functions and attributes used in the SLAM network are presented in the Tables 1 through 6.

5.1 Data Flow Diagrams for the Modules

The DFD for the arrival of requests and customer complaint is described as follows:

The requests are received through the general manager and the deputy with probability 0.4 and 0.6 , respectively. Also the requests are local or out of state with probability 0.45 and 0.55 , respectively. The production request, sampling and customer complaint are placed with probability $0.57,0.27$ and 0.19 , respectively. The general manager forwards the customer complaint to the lab and then lab manager reports the investigation results to the general manager. There are two kinds of results as the lab's investigation:

1) make complaint about a special product 2) forward a complaint form 3) forward three copies of the form(returned forms from warehouse) 4) forward three copies of the form(returned forms from warehouse) 5) Complaint assessment report 6) give all three returned forms from warehouse 7) give all three returned forms from warehouse 8) give the complaint assessment report to customer 9) Customer comment about the product 10) give all three returned forms from warehouse if either the product is defective and the customer wants to give back 11) forward the returned form as the permission of return of the product 12) forward the product according to the lab's comment 13) forward the first copy of the returned forms from warehouse if the product is identified modifiable by lab or the product is non-defective, but the customer wants to give back the product 14) forward the second copy of the returned forms from warehouse if the product is non-defective, but the customer wants to give back the product 15) forward the returned form as the permission of return of the product 16) send the product to inventory warehouse(because the product is non-defective) 17) give the second sheet of returned forms from warehouse to pay off to the customer 18) forward the third sheet of returned forms as the returned receipt

Figure 2. DFD for the customer complaints.

1) Customer product request 2) Forward the order rate to check if the inventory level is enough 3) forward the second copy to pay off by customer if the inventory is sufficient 4) forward the third copy as receipt when inventory is sufficient to customer order 5) forward the permission of exit of the product if the inventory is enough 6) forward the product and receipt to the customer 7) Pay off by customer 8) forward the amount of inventory shortage(inventory level is insufficient) 9) Forward the amounts of consumable materials and required raw materials 10) Forward the sample formula requested by the customer 11) permission form to provide consumable raw materials if it is insufficient 12) forward the permission to supply the raw materials 13) Completion of the material withdrawal form and forward it if there is enough inventory level from raw and consumables materials 14) Send back the warehouse report form 15) forward the warehouse report form according to the materials withdrawal.

Figure 3. DFD for the order and sample request by customers.

1) The product is non-defective or defect is solvable (with probability 0.75)
The result is forwarded to the customer as the received way of complaint (general manager or deputy).
2) The product is defective and defect is insolvable (with probability 0.25)

The result is forwarded to the customer as the re-
ceived way of complaint (general manager or deputy) and also the warehouse supervisor is informed of accepting the return of defective products. Figure 4 shows the DFD for the arrival of requests and complaints of customer.

The reader should note that the DFDs for the remained modules are not illustrated in the paper.

Table1. Used functions

Function	Description	Function	Description
F_1	time between requests	F27	Receiving the sample request by manager from
F1	Conversation time between customer and deputy to receive the request	F28	Deputy Conversation between general manager and
F2	Receiving the request by manager from deputy		customer to receive the sample request
F_3_1	Conservation time between general manager and customer to receive the request	$\begin{aligned} & \text { F_29_1 } \\ & \text { F_29_2 } \end{aligned}$	Receiving the sample request by lab Prototyping
F_3_2	Management approval to produce order	F30	Receiving the result of prototyping by manager
F4	Assessing inventory level by warehouse supervisor	$\begin{aligned} & \text { F_31_1 } \\ & \text { F_31_2 } \end{aligned}$	Receiving the result of prototyping by deputy the result report of prototyping by deputy
F5	Reporting unavailability of final products	F_32_1	the result report of prototyping by manager
F6	Production order and exit permission	F33	time between
F7	Assessing availability of raw materials		external activities of manager
F8	material withdrawal instruction	F34	external activity time of manager
F9	cleaning time of machine 1	F35	time between external activities of warehouse
F10	cleaning time of machine 2		Supervisor
F11	cleaning time of machine 3	F36	external activity time of warehouse supervisor
F12	materials withdrawal and production reports by production manager	F37	time between external activities of production Manager
F13	Recording of more product and less material	F38	external activity time of production manager
F14	Receiving the results of production by manager	F39	time between external activities of deputy
F15	Conversation between customer and deputy to receive the complaint	$\begin{aligned} & \text { F40 } \\ & \text { F41 } \end{aligned}$	external activity time of deputy time between
F16	Receiving the complaint by manager from deputy		external activities of lab manager
F17	Conversation between customer and General manager to receive the complaint	$\begin{aligned} & \text { F42 } \\ & \text { F43 } \end{aligned}$	external activity time of lab manager Time between failure of machine 1
F_18_1	Receiving the complaint by laboratory from manager	F44	repair time of machine 1 Time between failure of machine 2
F_18_2	Complaint assessment by lab	F46	Repair time of machine 2
F19	Receiving the complaint results if it is nondefective (from lab to manager)	$\begin{aligned} & \text { F47 } \\ & \text { F48 } \end{aligned}$	Time between failure of machine 3 Repair time of machine 3
F_21_1	Receiving the complaint results if it is nondefective (from manager to deputy)	$\begin{aligned} & \text { F49 } \\ & \text { F50 } \end{aligned}$	time between errors of machine 1 time between errors of machine 2
F_21_2	Complaint results report to customer by deputy	F51	time between errors of machine 3
F22	Presenting the result of non-defective to customer by manager (receiving the defect if it is defective)	$\begin{aligned} & \text { F52 } \\ & \text { F53 } \end{aligned}$	time between errors of operator 1 time between errors of operator 2
F_23_1	Receiving the result from lab if the product is defective	$\begin{aligned} & \text { F54 } \\ & \text { F55 } \end{aligned}$	time between errors of operator 3 time between errors (both machine and operator 1)
F24	Reporting the acceptance of defect by manager		which lead to cleaning cost
F25	Warehouse supervisor is informed of accepting the return of products	F56	time between errors (both machine and operator 2) which lead to cleaning cost
F26	Conservation between deputy and customer to receive the sample request	F57	time between errors (both machine and operator 3) which lead to cleaning cost

5.2 The Visual SLAM Network for the Modules

5.2.1 Recourse Allocation

Figure 5 shows resource allocation where EXCUTE, WARHOUSE, PRODUCER, LAB and REPRESENTA-

TIVE stand for the resources general manager, warehouse manager, production manager, lab manager and deputy, respectively. In addition, MACHINE 1, MACHINE 2 and MACHINE 3 stand for machines 1 through 3, respectively.

Table 2. Attributes of the SLAM network

Attribute	Description	Attribute	Description
ATRIB [1]	Arrival time of requests	XX (8)	Previous order code in line 1
ATRIB [2]	who receives the request: management (ATRIB [2] = 1), deputy (ATRIB [2] = 2)	XX (9) XX (10)	Production time of a specific order type in line 1 Production time in line 1 (F59)
ATRIB [3]	request serial number	XX (11)	Order code in line 2
ATRIB [4]	Request location: local (ATRIB [4] = 3), out of state (ATRIB [4] = 4)	XX (12) XX (13)	Previous order code in line 2 Production time of a specific order type in line 2
ATRIB [5]	Request type: production (ATRIB [5] = 1), Sample (ATRIB [5] = 2), complaint (ATRIB [5] = 3)	$\begin{aligned} & \text { XX (14) } \\ & \text { XX (15) } \end{aligned}$	Production time in line 2 (F60) Order code in line 3
ATRIB [6]	Color type (8 types)	XX (16)	Previous order code in line 3
ATRIB [7]	Order rate	XX (17)	Production time of a specific order type in line 3
ATRIB [8]	Manufacturing priority	XX (18)	Production time in line 3 (F61)
LTRIB [1]	utilized machine in production line 1	XX [19]	Variable for order production rate of type 1
LTRIB [2]	utilized machine in production line 2	XX [20]	Variable for order production rate of type 2
LTRIB [3]	utilized machine in production line 3	XX [21]	Variable for order production rate of type 3
XX (1)	Serial number of request	XX [22]	Variable for order production rate of type 4
XX (4)	Order priority variable in production line 1	XX [23]	Variable for order production rate of type 5
XX (5)	Order priority variable in production line 2	XX [24]	Variable for order production rate of type 6
XX (6)	Order priority variable in production line 3	XX [25]	Variable for order production rate of type 7
XX (7)	Order code in line 1	XX [26]	Variable for order production rate of type 8

Table 3. Variables

Variable	Description	variable	Description
XX27	Operator cost of machine 1	XX42	Raw materials costs of order type 7
XX28	Maintenance costs of machine 1	XX43	Raw materials costs of order type 8
XX29	Cleaning costs of machine 1	XX44	Costs of errors (both operator and machine 1) led to cleaning
XX30	Operator cost of machine 2	XX45	Costs of errors (both operator and machine 2) led to cleaning
XX31	Maintenance costs of machine 2	XX46	Costs of errors (both operator and machine 3) led to cleaning
XX32	Cleaning costs of machine 2	P_RATE1	Production rate of type 1
XX33	Operator cost of machine 3	P_RATE2	Production rate of type 2
XX34	Maintenance costs of machine 3	P_RATE3	Production rate of type 3
XX35	Cleaning costs of machine 3	P_RATE4	Production rate of type 4
XX36	Raw materials costs of order type 1	P_RATE5	Production rate of type 5
XX37	Raw materials costs of order type 2	P_RATE6	Production rate of type 6
XX38	Raw materials costs of order type 3	P_RATE7	Production rate of type 7
XX39	Raw materials costs of order type 4	P_RATE8	Production rate of type 8
XX40	Raw materials costs of order type 5	SFT1	Working hours per day
XX41	Raw materials costs of order type 6	SFT2	Non-working hours per day

5.2.2 The Visual SLAM Network for the Arrival of Requests and Complaints of Customer

The CREATE node is used to the arrival of requests with the time between of F_{-}1. ATRIB [1] is used as a variable for the arrival time of requests. The entities are routed to the GOON node with two branches and ASSIGN node and ATRIB [2] are used to determine who receives the request (general manager or deputy with probability 0.4 and 0.6 , respectively ($\mathrm{PROB}(0.4)$ and PROB (0.6))) in the branches). ATRIB [4] is used to determine the request location like ATRIB [2]. The enti-
ties are routed to ASSIGN node to assign XX [1] as the entities counter and the other ASSIGN node is used to put entities counter as ATRIB [3]. The entities are routed to one of the three nodes (21_production, 22_sampling, 23 error) with probability $0.57,0.24$ and 0.19 , which are related to production request, sampling request and customer complaint, respectively. SLAM network for the customer complaint is started with the ASSIGN node and assigned the ATRIB [5] equals to 3 to identify the request type and ATRIB [7] equals to F58.

If the request have been received through the dep-

Table 4.Values of cost variables

Variable	Value						Variable	Value	variable	Value
XX27	SFT $1 \times 22 \times 2 \times 3,500$ or $[(\mathrm{sft} 1 \times 22 \times 2-176) \times 2 \times 1.4+176 \times 22 \times 2] \times 3,500$						XX29	,000	XX36	$13,000 \times \mathrm{F}$
XX30	SFT $1 \times 22 \times 2 \times 3,500$ or $[(\mathrm{sft} 1 \times 22 \times 2-176) \times 2 \times 1.4+176 \times 22 \times 2] \times 3,500$						XX32	4,000	XX38	$13,000 \times \mathrm{F} 3$
XX33	SFT $1 \times 22 \times 2 \times 3,500$ or $[(\mathrm{sft} 1 \times 22 \times 2-176) \times 2 \times 1.4+176 \times 22 \times 2] \times 3,500$						XX35	6,000	XX40	$13,000 \times \mathrm{F} 3$
SFT2	8×60 (working hours for current system is 8)						XX37	$13,000 \times F 3$	XX42	$13,000 \times \mathrm{F} 3$
XX44	7,000	XX46	6,000	XX39	$13,000 \times F 3$	XX41	13,000 \times F3	XX43	$13,000 \times F 3$	
XX45	4,000	SFT1	(24-S	2) $\times 60$	XX28	52,000	XX31	63,000	XX34	55,000

Table 5. Activities in SLAM network

Ac. No.	Function								
33	F1	133	F11	179	F22	214	F34	233	F46
35	F2	144	F12	185	F23	216,218	F35	236,239	F47
36	F3	146	F13	187	F24	217	F36	237	F48
39	F4	148	F14	189	F25	221,219	F37	281,293	F49
41	F5	129	XX [18]	195	F26	220	F38	297,312	F50
42	F6	164	F15	197	F27	222,224	F39	316,327	F51
48	F7	166	F16	198	F28	223	F40	331,342	F52
49	F8	168	F17	201	F29	225,227	F41	346,361	F53
103	F9	171	F18	203	F30	226	F42	365,376	F54
115	F10	173	F19	205	F31	228,231	F43	380,383	F55
93	XX [10]	174	F20	207	F32	229	F44	387,390	F56
111,139	XX [14]	177	F21	213,215	F33	232,235	F45	394,397	F57

Table 6. Distribution functions

Function	Distribution	Function	Distribution	Function	Distribution
F_1	EXPON (61)	F_21_1	UNFRM $(17,19)$	F41	EXPON (10.6)
F1	RNORM ($22.5,6$)	F_21_2	RNORM ($13.3,6.8$)	F42	UNFRM $(3,6)$
F2	UNFRM (8,10)	F22	RNORM ($10.9,3.7$)	F43	WEIB (454, 8.26)
F_3_1	RNORM ($15,5.1$)	F_23_1	UNFRM (18, 22$)$	F44	RNORM (59.9, 127.8)
F_3_2	UNFRM (5,8)	F24	RNORM (16.7, 4.9)	F45	EXPON (714.2)
F4	UNFRM (5,8$)$	F25	UNFRM $(25,27)$	F46	RNORM (45.7, 61.2$)$
F5	UNFRM $(9,11)$	F26	RNORM (14.2, 6.9)	F47	EXPON (416.6)
F6	UNFRM $(4,6)$	F27	UNFRM (6, 8)	F48	RNORM (86.5, 15.6)
F7	UNFRM (6,8$)$	F28	RNORM ($12.4,5.2$)	F49	EXPON (150)
F8	UNFRM (10,14)	F_29_1	UNFRM (6, 8)	F50	EXPON (84)
F9	UNFRM $(14,17)$	F_29_2	DPROBN (5,6$)^{*}$	F51	EXPON (132)
F10	UNFRM $(11,14)$		RNORM (71.2, 12)	F52	EXPON (198)
F11	UNFRM (19, 22)	F30	UNFRM (7, 10)	F53	EXPON (138)
F12	UNFRM $(5,8)$	F_31_1	UNFRM $(8,11)$	F54	EXPON (168)
F13	UNFRM (8,10)	F_31_2	UNFRM $(10,12)$	F55	EXPON (366)
F14	UNFRM $(3,5)$	F_32_1	UNFRM $(9,11)$	F56	EXPON (336)
F15	RNORM ($25.8,7.1$)	F33	EXPON (37)	F57	EXPON (354)
F16	UNFRM $(11,13)$	F34	RNORM (22,7)	F58	DPROBN (1, 2)
F17	RNORM (18.6, 7.5)	F35	EXPON (72)	F59	ATRIB [7] ${ }^{*}$
F_18_2	UNFRM (6, 9)	F36	RNORM ($52,10.3$)		RNORM (109.7, 17.4)
F_18_1	DPROBN (3,4$)^{*}$	F37	EXPON (12)	F60	ATRIB [7] ${ }^{*} \mathrm{RNORM}(97.7,8.1)$
	RNORM $(45.3,15.6)$	F38	UNFRM $(4,6)$	F61	ATRIB [7] ${ }^{*}$
F19	UNFRM $(13,16)$	F39	EXPON (28)		RNORM (124.7, 24.6)
F20	UNFRM $(15,18)$	F40	RNORM $(26,11.3)$		

Figure 4. DFD for the arrival of requests and complaints.

Figure 5. The SLAM network of resources.
uty (ATRIB [2] = 2), the entity is routed to the AWAIT (file number16) node and is waiting for the deputy. The deputy reports the customer request to the general manager in time of F15 (activity number 164) and is freed by FREE node. Entity is routed to another AWAIT node (file number 18) and is waiting for the manager. The manager forwards the customer complaint to the lab manager in time of F16 (activity number 166) and is freed. If the request have been received through the general manager (ATRIB [2] = 1), the entity is routed to the AWAIT node (file number 17) and is waiting for the manager. The manager reports the complaint to the laboratory in time of F16 (activity number 166) and is freed.

In both of them, the entity is routed to the AWAIT node (file number 19) and is waiting for the lab manager. The lab manager receives the complaint in time of F_{-} $18 _1$ and tests the defective of product in time of F_{-} $18 _2$ and is freed in time of $\mathrm{F} 18=\mathrm{F} _18 _1+\mathrm{F} _18 _2$. The entity is then routed to the AWAIT node (file number 20) and is waiting for the general manager.

1) The product is non-defective or defect is solvable (PROB (0.75))
The manager receives the investigation result in time of F19 (activity number173) and is freed. If the complaint has been received through the deputy, the entity is routed to another AWAIT node (file number 21) and is waiting for the deputy. The deputy receives the investigation result in time of F 211 and reports to the customer in time of F_21_2 and is then freed in time of $\mathrm{F} 21=\mathrm{f} 21 _1+\mathrm{F} _21 _2$ (activity number 177). If the complaint has been received through the general manager, the manager reports the investigation result to the customer in time of F22 (activity number179) and is freed. Finally, the entity is routed to the COLCT node for data collection and is then terminated by the TERMINATE node.
2) If the defect is insolvable (PROB (0.25))

If the complaint has been received through the general manager, the warehouse supervisor is informed of
accepting the return of products in time of F24 (activity number 187) and manager is set free. If the complaint has been received through the deputy, the manager is set free and the entity is entered to the AWAIT node (file number 22) and is waiting for the deputy. The deputy receives the investigation result in time of F_23_1 and informs the warehouse supervisor of accepting the return of products in time of F_21_2 and is freed in time of $\mathrm{F} 23=\mathrm{F} _21 _2+\mathrm{F} _23 _1$ (activity number 185) with the aim of FREE node.

In both of them, the entity is routed to the AWAIT
node (file number 23) and is waiting for the warehouse supervisor. The warehouse supervisor receives the products in time of F25 (activity number 189) and is set free. The entity is entered to the COLCT node for data collection and is then terminated by the TERMINATE node (Figure 6).

5.2.3 The production branch

The SLAM network is initiated with ASSIGN node (21_PRODUCTION) to determine the request type (ATRIB [5] = 1), order rate (ATRIB [7] = F58) and color

Figure 6. SLAM network for the arrival of requests and customer complaint.
type (ATRIB [6]). If the request is received through the deputy (ATRIB [2] = 2), the entity is routed to AWAIT node and is waiting for the deputy. The deputy forwards the request to the general manager and is freed in time of F1. The entity is entered to another AWAIT node and is waiting for the general manager. The general manager forwards a form to the warehouse manager to check the
raw material inventory and is set free after time of F2. If the request is received through the central office, the general manager receives the request in time of $F_{-} 3 _1$ and forwards it to the warehouse manager in time of F_3_2 and is freed after time of F3 (F_3_1+F_3_2). The entity is then routed to AWAIT node and is waiting for the warehouse manager.

Figure 7. SLAM network for production process.

The warehouse manager checks the inventory and reports it to the general manager and is freed after time of F4. If the inventory is insufficient (with probability 0.1), the general manager reports it to the customer or the deputy (as the received way).

If the inventory level is sufficient (with probability 0.9), the general manager forwards the order rate to the production manager in time of F6 and is set free. At the same time, the production manager and the warehouse manager are busy informing the operators to get ready for producing and forwarding the needed production rate based on inventory level, respectively. The warehouse manager is freed after time of F7. If the inventory level is sufficient for the order rate based on warehouse manager's report (with probability 0.1), there is no need to produce any new product and the production manager is set free. The entity travels to ASSIGN node based on color type and adds the order rate and raw material cost to production rate and total cost, respectively. The entity is entered to COLLECT node for data collection and then terminated by TERMINATE node.

If the inventory level is not enough and the raw material is enough (with probability 0.9), the production manager forwards the order rate to the operator and is freed in time of F8 (Figure 7).

5.2.3.1 Raw Material Inventory is Sufficient and the Entity goes to the Production Process

The production process is started with FREE node (50_EXISTORDERS) to free the production manager.

The entity is then routed to ASSIGN node and adds the order rate to the production rate and raw material cost to the total cost, respectively. The entity is entered to another ASSIGN node to put ATRIB [8] = ATRIB [6] in order to determine color priority throughout the pro-
duction process and then routed to one of three production lines based on color type (Figure 8).

5.2.3.2 The Production Process of Machine 1

The entity is routed to GOON node (72_MACHINE 1) and then entered to another GOON node (75) with two branches. If the received entity has a lower priority than the being serviced one (ATRIB [8] < XX [4]), the entity goes to the ASSIGN node to put the received entity priority equal to ATRIB [8]+2 (because there are two types of color to produce in the line 1) and it will then return to GOON node (75).

If the received entity has a higher priority than the being serviced one (ATRIB [8] > XX [4], the entity travels to AWAIT node and waits for MACHINE 1. The entity is then routed to ASSIGN node to assign XX [4] $=$ ATRIB [8] and XX [7] = ATRIB [6] to determine the next priorities and the requested color type, respectively.

It also should be pointed out that if the waiting entities are more than 15 , the received entity goes to COLLECT nodes labeled as Q1 and 87 in order to collect data and is then terminated. If the entity passes through AWAIT node, it travels to ASSIGN node after the production time (XX [10]) in order to determine its next priority and the requested color type by assigning XX [4] = ATRIB [8] and XX [7] = ATRIB [6], respectively. The entity is then routed to GOON node and if the manufactured color is the same rank as the previous color (XX [7] = XX [8]), the production time of a particular color will be equal to XX [9] = XX [9]+XX [10]. If the manufactured color isn't the same rank as the previous color, the entity goes to ASSIGN node in order to determine the previous color for the next entity, record the production time of the manufactured color and add cleaning cost of machine 1 by assigning $\mathrm{XX}[8]=\mathrm{XX}$

Figure 8. Raw material is sufficient and production order.
[7], XX [9] = XX [10] and XX [100] = XX [100] +XX [30], respectively.

The entity is entered to GOON node and if the production time of a particular color is less or equal to 20 hours (XX [9] <= 20h), MACHINE1 is freed and the entity goes to the production termination process. If XX [9] $>20 \mathrm{~h}$, then the entity travels to ASSIGN node in order to determine the priority of next color and add cleaning cost by assigning $\mathrm{XX}[4]=\mathrm{XX}[4]+1$ and XX [100] $=\mathrm{XX}[100]+\mathrm{XX}$ [30]. The entity is then entered to FREE and FINDAR nodes to free machine 1 and remove all entities in file 25 after cleaning time, F9 (Figure 9).

5.2.3.3 The Production Process of Machines 2 and 3

The production process of machines 2 and 3 are similar as machine 1 with the following changes:

- F10, F45, F46, F50, F53, F56 and F60 for machine 2 and F11, F47, F48, F51, F54, F57 and F61 for machine 3 are applied instead of F9, F43, F44, F49, F52, F55 and F59, respectively.
- LTRIB [1] is replaced with LTRIB [2] and LTRIB [3] for machines 2 and 3, respectively.
- XX [5], XX [11], XX [12] and XX [13] for machine 2 and XX [6], XX [15], XX [16] and XX [17] for machine 3 are employed instead of XX [4], XX [7], XX [8] and XX [9].
- XX30, XX31 and XX32 and XX33, XX34 and XX35 are used instead of XX27, XX28, and XX29 for machines 2 and 3 , respectively.
- The number 2 in the equation ATRIB [8] = ATRIB [8]+2 will be 4 for machines 2 and 3 (Figure 10).

5.2.3.4 The Production Termination Process

The entity is routed to ASSIGN node labeled as 89_PRODUCTION_END and is then entered to AWAIT node and is waiting for the production manager. The production manager reports the material withdrawal and the production to the warehouse manager in time of F12 and is set free.

The warehouse manager takes the new inventory and reports it to the general manager in time of F13. The general manager is informed from the production result and is freed after time of F14. The entity then travels to COLLECT node in order to collect the lead time, total cost and the production rate data and is then terminated (Figure 11).

5.2.4 The Sampling Process

The SLAM network is started with ASSIGN node to determine the request type (ATRIB [5] = 2). If the request is received through the deputy (ATRIB [2] = 2), the entity goes to AWAIT node (file number 24) and is waiting for the deputy. The deputy receives the request from the customer in time of F26 (activity 195) and is set free. The entity is then routed to another AWAIT node (file $25)$ and is waiting for the general manager. The general manager receives the request from the deputy in time of F27 (activity 197) and is freed.

If the request is received through the general man-

Figure 9. The production process of machine 1.
ager (ATRIB [2] = 1), the entity travels to the AWAIT node (file 26) and is waiting for the general manager. The general manager receives the request from the customer in time of F28 (activity 198) and is set free.

In both cases, the entity is entered to AWAIT node, file number 27 and queue capacity is 10 and the excess
entities are routed to COLLECT nodes for collect dada and are terminated, and is waiting for the lab manager. The lab manager receives the formula in time of F _ 29_1 and makes the sample in time of F $29 _2$ and is then set free. The customer is informed from the result as the received way and the entity goes to COLLECT node for

Figure 10. The production processes of machines 2 and 3.
data collection and is then terminated (Figure 12).

5.2.5 Maintenance Process and Interaction between Managers and External Entities

The SLAM network is begun with CREATE node to create only one entity which is divided into eight entities (there are three machines labeled as MACHINE 1, 2 and 3 and five managers labeled as EXCUTIVE, WARE-

HOUSE, PRODUCER, REPRESENTATIVE and LAB). The SLAM network for the maintenance of MACHINE 1 is as follows as:

The entity is routed to PREEMPT node (file number 30) to demonstrate the failure of MACHINE 1 in time of F43. The entity is then entered to ASSIGN node in order to calculate the maintenance cost of MACHINE 1 (XX28) after time of F44 (repair time of MACHINE 1)

Figure 11. The end of production process.

Figure 12. Sampling process.
and is then set free. The entity goes back to PREEMPT node after time of F43 and the process will be continued until the simulation time is met.

The maintenance SLAM of machines 2 and 3 are similar as machine 1 with the following exceptions:

1) Time between failures of machines 2 and 3 are F45 and F47 instead of F43.
2) Repair time of machines 2 and 3 are F46 and F48 instead of F44.
3) The maintenance costs for machines 2 and 3 are XX31 and XX34 instead of XX28.

The SLAM network for the external activities of general manager is as follows as:

The entity is routed to ALTER node in order to alter the resource general manager from 1 to 0 after time of F33. The entity is then entered to another ALTER node in order to alter the resource general manager from 0 to 1 after time of F34. The entity goes back to the ALTER node after time of F33 and the process will be repeated until the simulation time is terminated.

The SLAM network for the external activities of warehouse manager, producer manager, deputy and lab
manager would be similar as the general manager by considering F36, F38, F40 and F42 instead of F34 and F35, F37, F39 and F41 instead of F33, respectively (Figure 13).

5.2.6 The SLAM Network of Working Shifts

By considering the working shifts, it is aimed to analyze the errors in different working shifts. The SLAM network is started with CREATE node to create only one entity which is divided into eight entities the same as the previous section. Then, the SLAM network of the general manager is as follows:

The entity goes to ALTER node in order to alter the resource general manager from 1 to 0 and is then routed to ASSIGN node in order to assign ATRIB [12] $=$ TNOW (the current time of the entity). The entity is then entered to another ALTER node to alter the resource general manager from 0 to 1 after time of SFT2((ATRIB [12]-ATRIB [11])-SFT1). The entity travels to ASSIGN node in order to assign ATRIB [11] = TNOW and then goes back to the ALTER node in order to set the recourse general manager equal to 0 in time of SFT1 and the cycle will be continued until the simulation time is met.

Figure 13. The maintenance process and interaction between managers and external entities.

The SLAM network of working shifts for the warehouse manager, deputy, production manager and lab manager are similar as the general manager in which ATRIB [13] and ATRIB [14], ATRIB [15] and ATRIB [16], ATRIB [17] and ATRIB [18] and ATRIB [19] and ATRIB [20] are employed instead of ATRIB [11] and ATRIB [12], respectively.

The SLAM network of machines 1 through 3 are similar as the general manager with some changes:

- The entity is routed to ASSIGN node in order to compute operator cost of machines 1 through 3 (XX27, XX28 and XX29, respectively) before going back to the ALTER node.
- ATRIB [21] and ATRIB [22], ATRIB [23] and ATRIB [24] and ATRIB [25] and ATRIB [26] are used instead of ATRIB [11] and ATRIB [12] for machines 1 through 3, respectively (Figure 14).

5.2.7 SLAM Network of Machine and Human Error

The SLAM network is initiated by CREATE node to create only one entity. The entity is then divided into six branches by considering machine type and working shifts. The route for machine 1 is drawn as follows:

The entity is routed to AWAIT node (file number 33) after time of F49 and is waiting for virtual resource (ERROR_MACHINE 1) in order to consider the error-
rate. The entity is then entered to GOON node with two branches to determine the product is semi-defective or defective with probability 0.7 and 0.3 , respectively.

1) If the product is semi-defective ($\mathrm{PROB}(0.7)$)

The entity travels to GOON node with two branches to return the product to the production line (72_MACHINE

1) and free the virtual resource.
$2)$ If the product is defective $(\operatorname{PROB}(0.3))$
The entity goes to ASSIGN node and decreases the production rate. The entity is then routed to FREE node to free the virtual resource.

In both of them, the entity goes back to the AWAIT node in time of F49 (activity number 293). The process will be repeated until the simulation time is terminated. Moreover, one of the entities is routed to PREEMPT node to consider working hours and shifts. This entity causes to stop the resource ERROR_MACHINE1 and free it after time of SFT1. The intended entity goes back to PREEMPT node in time of SFT2 and the procedure will be continued.

The SLAM network of machines 2 and 3 as well as the operator error work similar as machinel with the following exceptions:

Figure 14. The SLAM network of working shifts.

- F49, ERROR_MACHINE1, file number 33 and 72 MACHINE1 are replaced with F50, ERROR_MACHINE2, file number 34 and 73_MACHINE2 for machine 2 and F51, ERROR_MACHINE3, file number 35 and 74_MACHINE3 for machine 3.
- F49, ERROR_MACHINE1, file number 33 and 72 MACHINE1 are replaced with F52, ERROR_HUMANE1 and file number 36, F53, ERROR_HUMANE2 and file number 37 and F54, ERROR_HUMANE3 and file number 38 for operators 1 through 3, respectively.
- 72_MACHINE1, 73_MACHINE2 and 74_MACHINE3 $\overline{3}$ are the same as machines 1 through 3 for the operators 1 through 3, respectively (Figures 15 and 16).

5.2.8 The Error Caused to Cleaning

As stated before, the SLAM network is begun with a CREATE node in order to create only one entity which is divided into six branches by considering machine type and working shifts. The route for machine 1 is as follows as:

The entity is entered to the AWAIT node after time
of F55 and is waiting for the virtual resource (ERROR_ CLEANING_1, file number 39).

If there \bar{a} are any entities in the AWAIT node, the present entity goes to the TERMINATE node and is terminated, otherwise, the entity travels to the ASSIGN node in order to compute the cleaning cost (XX44) and is then entered to the FREE node to free the virtual resource. The entity goes back to the AWAIT node and the cycle will be continued until the simulation time is met.

Another one of six entities is routed to the PREEMPT node in order to consider the working shifts of machine 1 and causes to stop the virtual resource ERROR_CLEANING_1. The entity travels to the FREE node to free ERROR_CLEANING_1 after time of SFT1 and then goes back to the PREEMPT node after time of SFT2.

The SLAM network of machines 2 and 3 are similar as machine 1 in which F56, ERROR_CLEANING_2, file number 40 and XX45 for machine 2 and F57, ERROR_CLEANING_3, file number $41 \&$ XX46 are applied instead of F55, ERROR_CLEANING_1, file number 39 and XX44 (Figure 17).

Figure 15. The SLAM network of machine error.

Figure 16. The SLAM network of humane error.

5.3 Verification and Validation

The SLAM model has been run for 30 working days (1.5 working month) and replicated 100 times.

> Simulation time $($ minutes $)=($ working hours) 8 $\times($ minute $) \quad 60 \times($ working day $) 30$

The judgment and objective tests are used in order to verification and validation of the model. In The judgment tests, the experts express their views about the simulation model and its behavior. The objective tests compare the actual behavior of the system and the obtained relevant data by the simulation model. The model is verified by using two methods: 1) gradually and in the early stages of modeling 2) tracing some entities to monitor the entity path by the node monitoring in the SLAM
network. The received numbers of requests in eight different dimensions are used to validate the simulation model. The results of 30 replications are compared with 30 random samples of the actual system for the eight discussed performance criterion. It should be pointed out that the independent t-test is done to compare the mean of number of requests in the actual system and the simulation model by the SPSS software. Results of validation are presented in the Table 7. According to the results of validation, the simulation model behaves as good as the actual system.

6. SENSITIVITY ANALYSIS AND DISCUSSION

This paper considers 101 various scenarios to ana-

Figure 17. The SLAM network of error caused to cleaning.
lyze the system. The major bottlenecks are identified by Awe Sim summary report in the Visual SLAM. Inputs and outputs of the DEA model for the current system and scenarios are shown in Tables 8 and 9. In addition, the results have been drawn in Figure 18. Results show under the same conditions, the lead time for the lab manager considerably decreases by adding the assistant to the lab manager ($D 7, D 15, D 21, D 26, D 30, \cdots)$. This might be due to the high waiting time for the lab manager in the current system. By considering the results shown in Figure 18 , it could be inferred that under the same conditions, the lead times and the production rates increase as the machines are added ($D 89, D 90, D 91, D 92, \cdots$). The improvements in production rates are clear, however, increased lead times might be due to the fact that more requests are placed in the production line instead of the transition to the external queue (it means missing the request). Therefore, more requests cause more busy time for the resources and increased lead times for customers. As a result, the lead time could be reduced by adding the
machines if the production rates would be controlled. It can be seen that in the same conditions as the lead times increase, the production rates increase and vice versa. However, it can be observed that improvements (i.e. increase in production rates and decrease in lead times) are less in comparison with improvement in only one of them. In some scenarios, lead times increase in some dimensions and reduce in the remained dimensions byadding the assistant. This can be due to assistants' correlation in the mentioned dimensions. The results in Figure 18 show that total cost increases in all the scenarios. In most the scenarios, improvement percent for lead times reduce by adding more assistants and machines (sequence numbers in DMUs). This can be due to the fact that the resulted system behaves similar to two systems instead of a single system.

6.1 Data Envelopment Analysis (DEA) results

As mentioned before, in this study, the DEA is used

Table 7. Results of simulation and actual system in order to validate

	Run N.	raw material isn't sufficient		Inventory is sufficient to customer order		Production of machine 1		Production of machine		Production of machine 3		Product is non-defective or defect is solvable		Defect is acceptable		sampling	
		$1^{\text {a }}$	$2^{\text {b }}$	1	2	1	2	1	2	1	2	1	2	1	2	1	2
	1	3	14	5	11	25	26	37	38	22	23	33	41	16	14	57	68
	2	14	11	5	14	24	18	34	26	21	16	35	44	11	11	74	60
	3	11	8	3	16	31	20	45	30	27	18	41	30	14	16	55	57
	4	14	19	20	19	28	22	40	32	24	19	35	33	19	19	60	49
	5	16	16	17	22	29	23	41	33	25	20	22	27	11	14	52	49
	6	11	14	20	16	34	20	48	30	29	18	35	30	11	8	52	63
	7	8	20	11	14	23	33	33	47	20	29	25	35	11	14	68	60
	8	22	11	6	11	26	25	38	35	23	22	38	46	5	19	35	30
	9	11	9	9	17	33	27	47	40	29	24	30	46	5	25	46	46
	10	11	23	20	9	23	29	34	42	24	26	49	49	26	14	49	40
	11	11	20	11	11	27	20	40	29	28	17	32	52	11	8	69	69
	12	14	11	17	14	32	31	46	45	21	27	54	37	3	5	54	54
	13	30	26	3	17	24	33	35	47	24	29	37	34	9	8	46	46
	14	16	11	19	20	27	21	40	31	27	19	46	32	6	11	60	63
	15	14	9	16	17	31	24	45	35	35	21	40	29	11	14	69	57
	16	11	14	19	14	40	18	57	26	27	16	43	32	3	16	57	54
	17	14	19	11	14	31	37	45	53	21	32	43	52	9	8	43	49
	18	17	11	5	11	24	34	35	50	27	30	34	34	6	14	57	52
	19	20	8	8	16	31	26	45	38	19	23	42	44	11	11	44	46
	20	6	22	19	8	22	28	32	40	23	24	37	46	9	17	46	49
	21	11	19	11	11	26	19	38	27	27	17	30	49	6	20	65	60
	22	11	11	16	14	30	29	44	43	20	26	52	35	9	14	52	65
	23	11	25	11	16	23	31	33	45	23	27	35	33	14	9	44	68
	24	14	11	8	19	26	20	38	30	26	18	44	30	25	6	57	60
	25	14	8	16	16	29	23	43	33	33	20	38	27	11	9	65	57
	26	11	19	16	14	38	17	54	25	26	15	41	30	7	11	55	49
	27	14	5	8	11	29	35	43	51	20	31	41	49	14	14	41	43
	28	16	16	14	8	23	33	33	47	27	29	33	33	17	19	55	49
	29	19	25	16	5	31	32	45	46	18	28	41	33	19	17	49	55
	30	5	16	11	8	20	29	30	41	22	25	35	30	19	18	68	63
Inde-	T	-1.193		-1.128		1.384		1.433		1.383		0.322		-1.337		0.193	
pendent t-Test	$\begin{gathered} \text { Sig. } \\ \text { (2-tai } \\ \text { led) } \\ \hline \end{gathered}$	0.238		0.264		0.172		0.157		0.172		0.749		0.187		0.847	

${ }^{a}$ simulation result ${ }^{b}$ actual system.
in order to evaluate the different scenarios according to the criteria of production rates (8 products), lead times in 13 different dimensions and cost obtained through the simulation. DEA is a useful tool to measure the relative efficiencies a homogenous set of decision making units (DMUs), when multiple inputs and multiple outputs attend. Farrell (1957) considered a method including the one input and one output to measure the efficiency. Charnes et al. (1978) developed the Farrell's perspective and presented the CCR model which was able to measure
the efficiency with multiple input and output. The model BCC was developed by Banker et al. (1984) that was variable returns to scale in contrast with CCR (constant returns to scale). Adler et al. (2002) have reviewed the ranking methods in the DEA. Also, some researchers have attempted to improve and develop the DEA model (Meilin et al., 2010; Minh et al., 2012; Tone, 2002; Liu and Tsai, 2004; Anderson and Peterson, 1993).

There are two different approaches in the DEA: in-put-oriented approach (the inputs are decision variables

Table 8. Lead times in different dimensions for the current system and scenarios

		Undesirable outputs											
DMUs	Inputs	Unavailability of raw material	Production rate of machine 1	Capacity of machinel is full	Production rate of machine2	Capacity of machine2 is full	Production rate of machine 3	Capacity of machine3is full	Non defective	Defective	Sampling	Capacity of lab is full	fficient ventory
1	Current syste	103.042	5211.37	141.69	825	136.818	5513	68.733	426.517	480.6	184.29	55.110	124.510
2	M1:2	103.798	7720.059	119.526	625.33		513.144	7.465	426.509	480.668	12	55.111	124.500
3	$1: 3$	103.12	7275.26	131.259	25	136.734	512.897	34	425.984	479	1184.785	55.213	54
4	M2: 2	102.48	5210.43	142.86	556.90	145.90	6511.687	67.985	423.634	481.872	1183.857	55.3	124.978
5	M2: 3	102.0	5214	141	659	192.031	517.127	8.87	427.342	477.87	1181.984	5.1	124.432
6	M3: 2	102.912	5215.113	140.87	821.87	136.12	5225.689	7.462	424.345	482.435	1182.657	55.300	124.379
7	M3: 3	101.943	5219.311	143.173	6820.324	135.765	5263.031	42.427	425.654	480.546	1185.754	54.977	123.876
8	L: 2	93.721	5051	129.876	679.173	0.55	6316.115	62.515	387.933	457.757	301.868	1.106	113.462
9	G: 2	86.632	4821.56	128.46	94.	. 09	3477.985	37.563	398.000	450.143	1166.155	49.448	06.377
10	W: 2	95.284	5688.27	156.00	628.63	24.99	5628.127	35.465	394.602	443.697	1095.673	48.987	103.385
11	P: 2	92.707	7763.551	169.278	7663.845	34.896	4871.635	160.777	387.719	431.939	1076.559	50.097	123.467
12	D: 2	94.950	5670.629	161.97	7132.644	25.11	6078.025	62.140	396.790	448.488	1070.860	52.764	16.190
13	G: 2, W: 2	79.90	5658	122.	972.010	9.404	4340.549	65.783	366.715	414.755	1074.490	45.561	88.337
14	G: 2, P: 2	79.682	7886.7	146.4	368.971	31.170	6836.135	81.309	359.96	407.128	1054.719	44.723	88.460
15	D: $2, \mathrm{G}: 2$	80.596	5535.613	122.494	57.083	21.53	3443.75	22.923	370.858	423.505	1020.570	46.455	10.411
16	L: $2, \mathrm{G}: 2$	78.39	4363.3	116.254	63.3	19.992	147.46	3.99	299.959	341.009	253.887	. 013	6.268
17	G: 2, M1:2	86.908	4989.4	179.609	94.54	22.091	3477.979	7.563	398.000	450.143	1166.155	49.448	106.377
18	G: 2, M2: 2	86.09	3782.61	21	092.98	22.033	3479.876	36.765	396.876	447.987	1163.879	47.876	108.356
19	G3: 2, M3: 2	85.073	3787.8	209.98	7694.56	23.091	6268.27	32.207	391.754	452.875	1169.483	52.987	103.878
20	:2, P: 2	86.23	7240	167	228.92	33.891	7233.88	56.010	355.804	403.972	81.942	45.97	. 862
21	D: 2 , W:2	7.29	5499	143	46.	78.42	3775.68	59.247	364.973	412.526	984.993	48.533	7.101
22	W: 2, L: 2	85.967	5132.070	140.747	5078.263	22.55	4473.317	31.997	297.228	332.697	251.972	0.923	5.326
23	W: 2, M1: 2	95.361	6869	143.228	18.63	4.19	4958.127	4.87	391.767	443.876	1092.33	9.76	2.456
24	M2: $2, \mathrm{~W}: 2$	95.28	5688.2	156	959.30	22.40	4948.65	34.653	396.659	445.765	1093.765	51.34	835
25	W: 2, M3: 2	95.24	5689.4	151.65	5629.82	23.98	3519.654	25.221	394.876	448.876	1090.216	45.236	0.734
26	P: 2, D: 2	85.865	8460.065	155.412	10505.484	4.694	6060.844	69.782	358.111	404.769	966.473	47.620	116.602
27	L: 2, P: 2	83.45	6990.94	152.432	438.558	1.42	7629.04	144.777	284.584	326.154	247.100	0.905	111.180
28	$\mathrm{P}: 2, \mathrm{M} 1: 2$	89.586	8590.6	157.97	373.275	33.29	8471.863	158.26	389.193	435.183	1071.276	52.876	125.872
29	M2: 2, P: 2	92.707	7769.87	161.162	9893.999	31.006	8479.123	154.76	381.983	429.987	1069.873	48.267	121.273
30	P: 2, M3: 2	91.239	7758.287	157.293	376.333	34.286	7726.999	67.753	372.239	416.927	1059.592	49.391	18.274
31	L: 2, D: 2	85.745	5120.9	146.27	41.19	22.6	4171.39	25.56	291.902	334.102	254.526	. 409	101.675
32	D: 2, M1:2	96.456	6452.5	128.49	123.87	24.98	4612.293	29.18	391.284	443.277	1061.234	54.236	14.522
33	M2: 2, D: 2	94.950	6443.8	124.98	7248.102	23.702	4624.274	29.38	385.546	439.283	1065.425	51.273	113.231
34	D: 2, M3: 2	50	6438	124.125	7113.526	. 110	3834.15	24.620	382.342	439.284	1071.268	51.1	08.953
35	L: 2, M1:2	. 40	5488	10	1.62	22.87	921.15	1.35	315.452	359.717	71.46	1.006	11.479
36	L: 2, M2: 2	93.721	4730.3	126.95	6418.510	23.21	5917.836	60.285	313.284	357.927	268.295	1.019	109.876
37	M3: 2, L: 2	92.733	4728.184	131.384	6199.983	19.987	4752.951	52.655	309.876	365.164	279.987	0.997	114.387
38	M1:2, M2: 2	103.873	6029.2	139.174	038.28	.98	6514.387	67.179	423.286	486.176	1175.234	55.298	126.253
39	M1: 2, M3:2	104.0	6028	142.1	6817.19	24.94	5224.54	57.275	425.873	482.365	1183.58	54.954	125.0
40	M2: 2, M3: 2	103.798	6032.18	139.56	7054.274	25.275	5222.375	57.433	427.231	480.274	1180.173	54.197	124.198
41	G:2,W:2, P:2	71.653	5893.166	140.495	7593.803	26.303	4108.196	99.696	328.683	371.741	963.055	40.836	1.890
42	G:2,W:2,D:2	73.622	3938.135	8.612	5798.159	8.905	4420.233	40.446	339.506	387.680	334.293	42.527	7.139
43	G:2,W:2,L:2	71.666	5074.74	109.521	5356.070	17.403	3892.874	57.998	269.151	312.478	231.835	0.925	79.226
44	G: $2, \mathrm{~W}: 2, \mathrm{M} 1: 2$	79.687	5866.745	112.380	5961.754	18.755	4332.246	64.234	362.097	409.023	1060.107	44.509	87.345
45	$\mathrm{G}: 2, \mathrm{~W}: 2, \mathrm{M} 2: 2$	79.908	5651.642	120.199	6669.165	21.928	4332.913	61.876	361.372	412.906	1078.432	44.383	87.734
46	G:2, W:2, M3:2	78.973	5651.836	118.274	5974.298	19.404	3751.423	35.189	355.723	415.337	1068.922	46.823	88.337
47	$\mathrm{G}: 2, \mathrm{P}: 2, \mathrm{D}: 2$	71.730	8794.949	141.058	6833.468	24.637	6353.032	71.932	332.744	379.981	915.684	41.680	97.948
48	L: 2, G: 2,P:2	71.309	7058.048	131.023	8384.563	27.895	6117.855	72.765	268.285	305.001	227.078	0.906	79.166
49	P: 2, G: 2, M1:2	79.296	7953.276	154.947	9359.139	30.538	6831.287	79.537	357.265	402.762	1049.765	43.646	85.503
50	G: $2, \mathrm{P}: 2, \mathrm{M} 2: 2$	78.253	7881.276	145.297	8748.236	23.588	6825.762	78.360	356.280	402.289	1053.298	43.877	89.283
51	G: 2, P: 2, M3:2	79.982	7886.713	31.170	9368.971	28.491	8701.516	100.483	359.968	407.128	1054.719	44.723	88.46

Table 8. (continued)

52	G: 2, D: 2, L: 2	72.359	4969.846	109.975	5438.020	19.394	3100.741	20.580	274.295	315.714	241.889	0.518	99.127
53	G: 2, D: 2, M1: 2	79.784	5702.830	112.137	6048.274	21.285	3433.102	22.398	375.541	413.182	1017.183	46.298	109.111
54	M2: 2, G: 2, D: 2	80.596	5710.105	121.271	7524.092	19.802	344	22.190	368.555	424.290	1023.872	47.129	108.419
55	G: 2, D: 2, M3: 2	81.937	5698.265	120.244	6061.276	21.900	5138.133	44.112	374.193	419.267	1022.222	45.118	111.362
56	M1: 2, G: 2, L: 2	78.169	4940.325	108.195	695	19.532	315	33.177	297.763	339.099	254.205	1.019	97.191
57	G	77.276	4359	115	732	19.	314	34.442	295.262	338.457	25	0.9	93.844
58	G: 2, L: 2, M3: 2	76.101	4369.273	118.645	6949.374	18.999	5672.596	29.146	293.343	342.266	250.626	1.039	96.372
59	M1: 1, M2: 2, G: 2	85.626	5455.909	118.033	809.575	22.489	3477.016	37.610	397.894	451.500	1163.527	48.352	107.137
60	M1	87	54	12	76	22	6	32.7	398.972	452.378	1159.500	49.545	105.223
61	G: 2, M2: $2, \mathrm{M} 3: 2$	86.632	4816.512	127.289	8091.546	22.133	6262.022	32.207	396.000	450.318	1168.366	49.333	102.517
62	W: 2, P: 2, D	78.115	6586.808	158.888	677	25.801	656	80.851	326.294	368.807	880.606	43.390	82.731
63	W	76	64	14	80	30	6	49.	264.836	296.440	224.512	22	99.731
64	M1: 2, W: 2, P: 2	85.006	7242.922	131.108	9020.042	33.560	7229.942	55.993	353.232	401.293	985.006	46.763	110.801
65	P: 2, W: $2, \mathrm{M}$	86.489	7241.754	166.263	894	24.767	7232.654	55.102	352.525	398.463	981.284	43.985	109.216
66	P :	83	724.971	16	90	32	8806.776	108.735	348.891	404.094	4	45.973	111.862
67	W: 2, D: 2,	78.096	4919.992	128.769	5320.099	19.756	3377.755	53.002	265.983	304.364	231.926	1.284	86.868
68	$\mathrm{W}: 2, \mathrm{D}$	89.057	563	126.270	5944.243		3769	58.08	362.093	410.984	981.198	47.274	96.154
69	W	87	5	14	58	2	3	59	364.289	7	8	55	97.187
70	M3: 2, D: 2, W: 2	87.391	5500.273	144.183	5950.437	23.196	6238.654	30.987	365.874	413.486	982.367	49.649	98.098
71	W: 2, L: $2, \mathrm{M}$	86.037	6197.700	129.223	507	22.324	446	30.271	291.193	338.928	254.961	0.933	83.919
72	L:	84.305	513	139	62	20	44	31	296	333.276	251.287	08	86.735
73	L: 2, M3: 2,	86.997	5136.119	141.186	5059.174	22.501	3175.736	23.156	299.255	336.232	248.217	0.899	84.777
74	$\mathrm{W}: 2$,	95	685	14	6	20.517	49	37	39	7	1098.551	48.175	7
75	W	95	686	143	56	25.875	352	23.187	398.278	442.155	1093.942	51	96.146
76	M2: 2, M3: 2 ,	94.708	5683.196	155.603	6950.89	21.955	3510.197	25.306	390.779	444.497	1095.487	50.177	94.293
77	P. 2, D. 2,	76	75	13	93	30.	54	62	26	298.037	22	7	10
78	P: 2, D: 2, M1: 2	87.733	8562.91	168	10510.51	33.	6065.545	67.414	361.984	409.391	959.904	48.516	11
79	M2: 2, D: 2,	84.333	8467.885	153	9177.541	31.716	6072.984	71.047	361.547	399.761	955.294	48.897	115.931
80	P: 2, D: 2,	85.899	8460.06	16	1050	31	83	107.	358.274	404.047	96	47.851	116.142
81	L:	81.572	7740.942	141.323	8427.982	32.273	7619.335	139.503	283.417	318.004	248.449	0.917	112.125
82	P:	83.129	6987.	149.194	8990.946	27.921	7631.593	145.918	288.197	331.302	249.643	0.884	108.998
83	M3: 2, L: 2	83.060	6990.946	152.423	8437.835	31.	6958.032	61.011	284.584	326.164	247.284	0.907	111.180
84	M	90	8590.393	153.746	9896.655	29.998	8476.018	158.004	391.761	430.720	1079.610	52.023	20.654
85	M1: 2, M3: 2 ,	91.70	8601.18	157	9363.544	34.2	7737.74	69.765	382.999	429.378	1072.193	52.097	124.654
86	M2: 2, M3: 2, P: 2	92.707	7763.765	169.119	989	31.006	7726.78	67.114	387.417	436.176	1076.649	50.843	05
87	D: 2, L: 2, M1: 2	87.173	5827.036	116.039	6435.755	22.876	4167.226	24.347	289.294	332.864	252.398	1.302	102.397
88	M2: 2,	85.876	5129.877	148.309	6542.176	21.044	4161.173	26.374	292.107	338.590	257.993	1.509	99.981
89	M3: 2, L: 2, D: 2	84.653	5120.278	146.876	6442.376	22.775	3458.596	22.101	288.759	340.297	247.019	1.561	103.256
90	L: 2, M1: 2,	94.650	5482.779	109.061	6409.090	23.645	4739.56	53.194	313.098	358.937	272.217	1.009	115.018
91	L: 2, M1: 2, M3: 2	94.765	5493.987	107.537	6208.232	22.43	4774.	53.976	317.086	355.853	275.006	1.100	114.543
92	L: 2, M2: 2, M3: 2	94.408	4738.251	128.263	6419.173	23.171	4751.164	51.646	317.765	362.165	274.963	0.902	113.759
93	M1: 2, M2: 2, M3: 2	102.287	5201.982	119.556	7044.217	25.548	5316.87	57.665	426.402	480.104	1184.365	55.110	124.236
94	G: 2, W: 2, P: 2, D: 2	64.459	6581.069	131.175	6534.389	17.582	7497.997	85.515	301.393	344.158	829.407	37.753	75.942
95	G: 2, W: 2, P: 2, L: 2	62.340	5215.028	124.328	6719.970	23.277	5573.241	88.224	238.027	276.344	205.026	0.818	81.316
96	G: 2, P: 2, D: 2, L: 2	63.559	7793.100	124.990	6055.055	21.830	5629.34	63.738	242.896	279.574	214.199	0.459	86.791
97	$\mathrm{W}: 2, \mathrm{P}: 2, \mathrm{D}: 2, \mathrm{~L}: 2$	68.906	5810.314	140.157	5973.210	22.760	5794.901	71.320	234.474	268.308	204.451	1.132	72.978
98	$\mathrm{G}: 2, \mathrm{~W}: 2, \mathrm{P}: 2, \mathrm{D}: 2, \mathrm{~L}: 2$	56.352	5753.426	114.678	5712.616	15.371	6555.120	74.760	216.696	250.336	191.423	0.410	66.392
99	Change of working hours: 6 hours, one-shift Change of working	103.439	5797.820	150.019	7449.523	30.993	4736.617	39.304	431.090	486.512	1005.095	44.557	108.931
100	: hours 6 hours, two-shifts	101.999	6234.723	183.604	7381.195	30.095	6762.197	87.608	425.665	489.358	1354.055	60.356	110.190
101	Preventive maintenance (time between of 400 min)	102.012	4898.693	130.358	6143.085	129.977	5536.338	69.420	423.387	482.284	1173.209	52.198	117.238

M: machine, D: deputy, G: general manager, L: lab manager, W: warehouse, P: production manager.

Table 9. Results of production rates and total cost for the current system and scenarios

DMU	desirable outputs								Undesirable output Total cost
	Production rate 1	Production rate 2	Production rate 3	Production rate 4	Production rate 5	Production rate 6	Production rate 7	Production rate 8	
1	229.195	183.512	128.268	86.857	138.115	160.827	115.433	173.608	37748411.357
2	266.526	236.726	150.328	96.243	171.381	183.356	138.027	194.023	43096783.844
3	320.371	264.519	203.389	134.193	203.368	206.113	179.004	217.876	48350251.849
4	234.339	202.995	151.964	94.962	135.024	167.331	137.878	166.702	39457709.974
5	224.080	205.162	122.258	85.427	140.996	172.708	120.525	147.178	36070177.570
6	201.283	168.890	104.114	79.463	110.595	139.171	88.336	142.685	39230958.266
7	192.678	154.817	99.808	61.853	102.914	117.226	97.406	132.529	34349168.575
8	226.781	201.123	139.234	91.856	148.128	178.675	145.765	197.876	42400672.589
9	236.959	218.691	139.304	93.835	141.372	161.359	116.130	153.421	43238042.000
10	271.913	205.463	172.508	87.968	169.102	181.079	125.363	180.861	39630382.380
11	376.247	291.298	227.454	137.347	239.126	249.218	200.780	279.787	44175060.679
12	269.910	203.668	156.858	107.830	167.601	189.519	144.492	185.758	39933024.823
13	286.025	255.140	150.839	126.009	174.958	170.279	151.093	237.784	46937690.251
14	405.716	323.618	242.574	156.948	263.247	257.223	222.015	261.277	52798389.757
15	277.503	225.575	168.974	104.029	172.296	186.171	152.712	186.644	48003557.864
16	223.546	206.312	131.419	88.524	133.370	152.225	109.557	144.737	43087420.905
17	233.162	174.083	119.500	80.425	142.408	127.900	114.717	162.917	44087420.905
18	299.932	245.458	165.496	106.497	175.452	213.662	160.982	192.873	45463310.504
19	233.550	183.860	128.711	99.826	140.806	142.264	125.323	169.075	46400141.493
20	382.621	318.049	207.571	141.533	237.566	258.470	288.593	110.125	46932945.865
21	281.810	219.127	154.066	103.035	176.522	188.239	144.450	186.312	41733987.877
22	271.913	205.463	172.508	87.968	169.102	181.079	125.363	180.861	42561976.437
23	326.787	247.114	198.863	142.347	213.879	230.202	167.612	246.202	42180318.817
24	256.323	204.754	157.915	93.471	159.370	183.486	122.125	187.019	41961976.437
25	208.664	164.257	119.276	71.765	124.872	130.872	102.963	145.875	42561976.437
26	442.344	338.147	254.986	160.910	272.177	320.011	225.789	338.387	47368461.976
27	376.247	291.298	227.254	137.347	239.126	249.218	200.780	279.787	47175060.679
28	415.814	346.582	239.708	169.719	288.684	282.869	216.278	295.344	46175060.679
29	383.427	292.834	222.668	138.416	232.555	266.853	198.757	275.519	46675060.679
30	351.326	266.201	187.807	133.786	208.040	228.661	182.743	251.055	47001959.738
31	269.910	203.663	156.858	107.830	167.601	189.519	144.492	185.758	46002813.960
32	307.770	265.147	185.943	121.002	231.415	196.831	154.734	208.914	42091603.077
33	276.298	212.021	152.724	97.893	172.364	183.809	136.150	187.650	42360202.702
34	219.532	158.877	119.682	81.668	121.910	151.424	108.957	141.999	42360202.702
35	264.004	236.726	150.328	96.243	171.381	183.356	138.027	194.023	43248411.357
36	231.767	193.253	140.116	90.909	136.569	164.079	126.655	170.155	43117363.232
37	235.596	186.279	130.486	93.647	139.098	164.345	116.414	164.221	43248411.357
38	249.800	211.503	140.407	94.945	155.240	173.850	127.221	179.122	42617363.232
39	232.643	202.808	127.221	87.853	140.988	161.263	113.182	168.354	43248411.357
40	217.811	185.942	128.039	87.213	122.810	153.251	113.107	154.694	42720986.492
41	331.369	238.537	184.133	120.474	202.703	198.461	157.369	228.849	53416593.141
42	214.835	159.596	109.233	86.635	138.882	137.149	115.074	150.153	47584488.817
43	286.025	225.140	150.839	126.009	174.958	170.279	151.093	237.784	51937690.251
44	297.647	250.389	174.204	109.687	177.080	182.216	138.413	209.449	50437690.251
45	279.233	227.287	152.248	110.842	171.588	185.082	142.538	210.459	49437690.251
46	212.451	178.826	112.460	94.941	124.747	147.828	113.121	172.795	47920508.941
47	488.352	363.992	303.105	193.267	315.994	334.751	248.953	356.446	53325022.924
48	405.716	323.618	242.574	156.948	263.247	257.223	222.015	261.277	54798389.757
49	409.625	336.016	251.725	153.582	262.206	254.613	230.531	288.353	54298389.757
50	380.822	306.822	222.065	139.599	240.066	258.084	209.063	261.893	53561325.234
51	402.968	308.907	223.667	144.744	231.586	258.290	209.316	268.493	54298367.876
52	277.503	225.575	168.974	104.029	172.296	186.171	152.712	186.644	48387112.109
53	285.600	217.276	161.444	102.375	196.542	197.693	137.348	197.890	49237655.998
54	289.899	237.486	167.500	102.441	174.226	198.203	151.932	200.731	48238265.298

Table 9. (continued)

55	254.920	204.673	140.051	92.380	141.454	169.745	131.281	168.182	48298447.264
56	254.596	200.329	148.616	99.643	159.236	154.038	140.882	200.167	48323341.876
57	261.739	225.885	148.458	97.511	154.411	182.944	135.269	168.805	46396088.916
58	228.548	195.086	130.065	94.175	137.088	147.244	117.440	156.906	49900141.493
59	276.639	222.894	157.056	103.070	167.344	183.850	150.932	196.520	47823341.183
60	243.448	192.095	138.664	99.735	150.021	148.151	133.102	184.621	49400141.493
61	266.741	214.659	147.104	103.162	158.129	177.963	143.152	180.974	49400141.493
62	378.737	304.096	240.916	144.512	251.728	257.399	198.921	264.182	47916451.649
63	382.621	318.049	207.571	141.533	237.566	258.470	187.215	288.593	49932945.865
64	381.977	304.266	228.818	160.783	246.896	253.007	199.440	285.209	49432945.865
65	370.472	319.002	205.665	132.258	224.005	257.657	195.081	278.157	49778697.802
66	378.523	303.405	195.472	136.929	232.051	264.169	190.559	302.936	50800383.694
67	281.810	219.127	154.066	103.035	176.522	188.239	144.450	186.312	43733987.877
68	290.989	235.615	165.718	100.537	183.756	214.902	146.952	225.193	43917366.275
69	257.434	202.835	143.729	91.831	167.151	168.497	130.339	174.842	43895855.175
70	278.582	208.122	140.623	102.162	161.133	185.598	139.342	187.753	44106094.206
71	326.787	247.114	198.863	142.347	213.879	230.202	167.612	246.202	45680318.817
72	256.323	204.011	156.732	93.073	159.983	183.486	121.127	182.464	45061976.437
73	213.612	171.324	111.062	79.935	127.763	134.770	111.818	147.960	45061976.117
74	283.760	224.836	169.909	120.262	182.371	208.047	142.251	215.134	45180318.817
75	236.101	185.318	133.461	99.591	146.375	155.751	123.399	177.905	45817451.754
76	193.074	163.040	104.507	77.507	114.867	133.597	98.038	146.837	44561988.140
77	442.344	338.147	254.986	160.910	213.879	320.011	225.789	338.387	50368461.029
78	449.630	351.326	304.198	180.346	294.230	311.358	267.835	327.077	51712310.904
79	402.594	318.133	233.651	145.422	252.437	281.623	209.872	304.276	49637684.787
80	402.403	317.238	220.012	136.817	235.174	277.363	201.175	303.047	50435185.920
81	415.814	346.582	239.708	169.719	288.684	282.869	216.278	295.344	49675060.679
82	403.211	320.476	228.795	154.602	257.334	283.679	206.506	283.297	50358765.066
83	371.109	293.843	193.934	149.972	232.819	245.486	190.492	258.833	50019159.738
84	403.211	320.476	228.795	154.602	257.334	283.679	206.506	283.297	49858765.066
85	358.609	294.843	213.934	139.972	228.819	220.486	180.492	248.833	49501959.738
86	358.506	267.738	183.021	134.854	201.469	246.296	180.720	246.787	49865367.983
87	307.770	265.147	185.943	121.002	231.415	196.831	154.734	208.914	45591603.077
88	276.298	212.021	152.724	97.893	172.364	183.809	136.150	187.650	45376568.098
89	219.532	158.877	119.682	81.668	121.910	151.424	108.957	141.999	45498764.754
90	249.172	219.860	151.146	95.602	153.202	175.343	137.952	180.363	45720986.492
91	232.643	202.808	127.221	87.853	140.988	161.263	113.182	168.354	45786754.087
92	217.811	185.942	128.039	87.213	122.810	153.251	113.107	154.694	45720986.492
93	233.209	202.870	135.469	90.223	139.000	163.286	121.414	167.803	45220344.287
94	406.342	304.457	237.952	152.320	266.576	250.253	216.274	308.230	56361266.772
95	331.369	238.537	184.133	120.474	202.703	198.461	157.369	228.849	57551091.427
96	488.352	363.992	303.105	193.267	315.994	334.751	248.953	356.446	56325022.924
97	378.737	304.096	240.916	144.512	251.728	257.399	198.921	264.182	50916451.649
98	406.342	304.457	237.952	152.320	266.576	250.253	216.274	308.230	59361266.772
98	340.530	288.981	210.623	133.653	217.161	246.971	181.388	256.329	65167965.990
99	255.278	189.616	140.601	83.417	147.976	161.744	126.149	184.878	3334302.635
100	272.441	235.202	172.022	113.339	181.602	196.748	147.089	195.994	46358231.239
101	239.655	191.394	136.681	93.194	140.021	169.493	121.203	182.489	44349187.021

12000
10000
8
8
8
0

DMUs
Figure 18. simulation results for makespan, cost, and waiting times.

Figure 18. (continued).
and the outputs are constant and pre-determined) and out-put-oriented approach (the inputs are constant and outputs are decision variables). Selecting an approach depends on control extent of inputs and outputs by managers (Battese and Coelli, 1998). Sueyoshi and Goto (2010) have combined operational and environmental efficiency measurements (desirable and undesirable variables) and presented two types of unified efficiency model. The first unified output-oriented model proposed by them is formulated as follows:
$\max \sum_{i=1}^{e} R_{i}^{x} s_{i}^{x y}+\sum_{r=1}^{t} R_{r}^{y} s_{r}^{y}+\sum_{i=1}^{e} R_{i}^{x} s_{i}^{x z}+\sum_{f=1}^{h} R_{f}^{z} s_{f}^{z}$
s.t.

$$
\begin{align*}
& \sum_{j=1}^{n} x_{i j} \lambda_{j}^{y}+s_{i}^{x y}=x_{i k}, \quad k \text { th organization } \\
& \sum_{j=1}^{n} y_{r j} \lambda_{j}^{y}-s_{r}^{z}=y_{r k} \tag{1}\\
& \sum_{j=1}^{n} \lambda_{j}^{y}=1 \\
& \sum_{j=1}^{n} x_{i j} \lambda_{j}^{z}-s_{i}^{x z}=x_{i k} \\
& \sum_{j=1}^{n} z_{f j} \lambda_{j}^{z}+s_{f}^{z}=z_{f k} \\
& \sum_{j=1}^{n} \lambda_{j}^{z}=1 \\
& \lambda_{j}^{y}, \lambda_{j}^{z}, s_{i}^{x y}, s_{i}^{x z}, s_{r}^{y}, s_{f}^{z} \geq 0, \\
& \quad j=1, \cdots, n ; i=1, \cdots, e ; f=1, \cdots, h ; r=1, \cdots, t ;
\end{align*}
$$

In which, $X_{j}=\left(x_{l j}, x_{2 j}, \cdots, x_{e j}\right)^{T}, Y_{j}=\left(y_{l j}, y_{2 i}, \cdots, y_{t j}\right)^{T}$, $Z_{j}=\left(z_{l j}, z_{2 j}, \cdots, z_{h j}\right), \lambda_{j}^{y}, \lambda_{j}^{z}$ and $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)^{T}$ stand for column vector of inputs, desirable(good) outputs, undesirable (bad) outputs, the j th unknown variable for desirable outputs, the j th unknown variable for undesirable outputs and unknown variables, respectively. Also, s_{i}^{x}, $s_{r}^{y}, s_{f}^{z}, s_{i}^{x y}$ and $s_{i}^{x z}$ indicate slack variables related to in-
puts, desirable outputs, undesirable outputs, the i th in-put-related variable on desirable outputs and the i th in-put-related variable on undesirable outputs, respectively. Moreover, n organizations is considered and it is assumed that X_{j}, Y_{j} and $Z_{j}>0$ for all $j=1, \cdots, n$.
$R s$ indicate the ranges and are computed as follows:

$$
R_{i}^{x}=\frac{1}{\left[(e+t+h)\left(U B_{i}^{x}-L B_{i}^{x}\right)\right]}, R_{r}^{y}=\frac{1}{\left[(e+t+h)\left(U B_{r}^{y}-L B_{r}^{y}\right)\right]}
$$

and $R_{f}^{z}=\frac{1}{\left[(e+h+t)\left(U B_{f}^{z}-L B_{f}^{z}\right)\right]}$
In which, $U B_{i}^{x}=\max _{j}\left\{\mathrm{x}_{i j}\right\}, U B_{r}^{y}=\max _{j}\left\{\mathrm{y}_{r j}\right\}, L B_{i}^{x}=\min _{j}$ $\left\{\mathrm{x}_{i j}\right\}, L B_{r}^{y}=\min _{j}\left\{\mathrm{y}_{r j}\right\}, U B_{f}^{y}=\max _{j}\left\{\mathrm{z}_{f j}\right\}$, and $L B_{f}^{z}=\min _{j}$ $\left\{\mathrm{z}_{f j}\right\}$.

In this study, the best DMU is selected by using model (1) and considering the number of machines, the number of assistants of deputy, the general manager, the lab manager, the warehouse manager and the production manager and working hours as inputs, the production rates (to maximize) as desirable outputs and the lead times and cost (to minimize) as undesirable outputs (Tables 8 and 9).

The results of DEA are given in the Table 10.
The features of this study compared to the previous studies are indicated in the Table 11.

7. CONCLUSION

Companies need different strategies to achieve their business goals. The common strategies are to minimize the costs and lead times and maximize the production rates. The current study considers the integrated system imposed of business, maintenance and production process by incorporating errors to minimize total cost and lead

Table 10. DEA results (output-oriented unified model)

Table 11. Features of this study compared to the previous studies

	business	Maintenance	Production	Objective		Human error	Information system
				single	multi		
Azadeh et al. (2008)	\checkmark		\checkmark	\checkmark			\checkmark
Pinjala et al. (2006)	\checkmark	$\sqrt{ }$					
Oke and Charles-Owaba (2007)		\checkmark	\checkmark	\checkmark			
Kjaer (2003)	\checkmark						
Bouvard et al. (2011)		\checkmark	\checkmark				
Gulledge et al. (2010)	\checkmark	\checkmark		\checkmark			
Kim and Park (2012)		$\sqrt{ }$				\checkmark	
Heo and Park (2010)		\checkmark				$\sqrt{ }$	
Liu et al. (2009)			\checkmark	\checkmark		$\sqrt{ }$	
This study	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	

times and maximize production rates, simultaneously.
Unique features of this study led to obtain a good and optimized system. Some causes of human error were identified and proposed methods to rectify them. Also, the optimal scenario for time between preventive maintenance was found by considering the other factors for the system being studied. Moreover, the methods were presented to remove the major bottlenecks of the integrated system.

8. SUGGESTION FOR FUTURE RESEARCHES

There are several extensions to this study which can be investigated in future researches:

- Preventive maintenance (PM) inspection period could be investigated in more details. Also the type and number of maintenance activities could be changed.
- It is possible to consider other multi-criteria functions. For example, average utilization of equipment, availability, average queue length and etc. could be added to the criteria of this research.
- It could be extended by considering extensive ergonomics factors like facility layout design.
- Also, the safety factor could provide another field for research.

REFERENCES

Adler, N., Friedman, L., and Sinuany-Stern, Z. (2002), Review of Ranking Methods in Data Envelopment Analysis Context, European Journal of Operation Research, 140(2), 249-265, doi:10.1016/S0377-22 17(02)00068-1.
Andersen, P. and Petersen, N. C. (1993), A Procedure for Ranking Efficient Units in Data Envelopment,

Analysis Management Science, 39(10), 1261-1294.
Azadeh, A., Darivandi, K., and Fathi, E. (2012), Diagnosing, simulating and improving business process using cybernetic laws and the viable System model: The Case of a purchasing process, Systems research and behavioral science syst. Res., 29, 66-86.
Azadeh, A., Ghaderi, S. F., and Izadbakhsh, H. (2008), Integration of DEA and AHP with computer simulation for railway system improvement and optimization, Applied Mathematics and Computation, 195, 775-785.
Azadeh, A., Haghnevis, M. and Khodadadegan, Y. (2008), Design of the Integrated Information System, Business and Production Process by Simulation, Journal of the American society for information science and technology, 59(2), 216-234.
Azadeh, A., Sheikhalishahi, M., Firozi, M., and Khalili, S. M. (2013), An Integrated Fuzzy Simulation-Fuzzy DEA Approach for Optimum Maintenance Planning, International Journal of Computer Integrated Manufacturing.
Banker, R. D., Charnes, A. and Cooper, W. W. (1984), Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis, Management Science, 30(9), 1078-1092, doi:10.1287/ mnsc.30.9.1078.
Bouvard, K., Artus, S., Berenguer, C. and Cocquempot, V. (2011), Condition-based dynamic maintenance operations planning and grouping: Application to commercial heavy vehicles, Reliability engineering and system safety, 96, 601-610.
Charnes, A., Cooper, W. W., and Rhodes, E. (1978), Measuring the efficiency of decision making units, European Journal of Operational Research, 2, 429-444.
Chen, H. and Papazafeiropouloa, A. (2013), Supply chain integration in the IT manufacturing sector: how in-
tegration technologies adoption can improve efficiency, Int. J. Applied Systemic Studies, 5(1/2).
Datta, P. P. and Roy, R. (2010), Cost modelling techniques for availability type service support contracts: A literature review and empirical study, CIRP Journal of Manufacturing Science and Technology, 3, 142-157.
Goldsman, D., Nelson, B. L., Opicka, T. and Pritsker, A. A. B. (1999), Ranking and selection project: experiences from a university industry collaboration, Simulation conference proceedings, 1, 83-92.
Gulledge, T., Hiroshige, S. and Iyer, R. (2010), Condi-tion-based maintenance and the product improvement process, Computers in industry, 61, 813-832.
Hashemi, M., Shahmorad-Moghanloo, S., and Behboudi, D. (2014), Review the allocation of production lines in shifts with minimizing energy costs approach in Tehran Pegah Company, Int. J. Operational Research, 19.
Heo, G. and Park, J. (2010), A framework for evaluating the effects of maintenance-related human errors in nuclear power plants, Reliability Engineering and System Safety, 95, 797-805.
Jahangirian, M., Eldabi, T. 1., Naseer, A., Stergioulas, L. K., and Young, T. (2010), Simulation in manufacturing and business: A review, European Journal of Operational Research, 203, 1-13.
Jin, Y., Kurooka, T., Yamashita, Y., and Nishitani, H. (2003), Modeling and Simulation of Human Errors in Plant Operations, Process Systems Engineering, 1280-1285.
Kim, J. and Park, J. (2012), Reduction of test and maintenance human errors by analyzing task characteristics and work conditions, Progress in Nuclear Energy, 58, 89-99.
Kirwan, B. (1992), Human error identification in human reliability assessment. Part 1: Overview of approaches, Applied Ergonomics, 23(5), 299-318.
Kjaer, A. P. (2003), The integration of business and production processes, IEEE Control Systems Magazine, 23(6), 50-58.
Law, C. C. H., Chen, C. C., and Wu, B. J. P. (2010), Managing the full ERP life-cycle: Considerations of maintenance and support requirements and IT governance practice as integral elements of the formula for successful ERP adoption, Computersin Industry, 61, 297-308.
Liu, F. H. and Tsai, L. C. (2004), Ranking of DEA Units with a Set of Weights to Performance Indices, Pa per was prepared for The Fourth International Symposium on DEA, 4-6 September, at Aston University.
Liu, H., Hwang, S. L., and Liu, T. H. (2009), Economic assessment of human errors in manufacturing environment, Safety Science, 47, 170-182.

Minh, N., Khanh, P., and Tuan, P. (2012), A New Approach for Ranking Efficient Units in Data Envelopment Analysis and Application to a Sample of Vietnamese Agricultural Bank Branches, American Journal of Operations Research, 2(1), 126-136.
Oke, S. A. and Charles-Owaba, O. E. (2007), A fuzzy linguistic approach of preventive maintenance scheduling cost optimization, Kathmandu university journal of science, engineering and technology, I(III).
Paknafs, B. (2013), Modeling and simulation of business and operation and maintenance process with make span, cost and manpower simultaneous criteria, Master of Science Thesis, Tehran, Iran: University of Tehran, Faculty of Engineering.
Pinjala, S. K., Pintelon, L., and Vereecke, A. (2006), An empirical investigation on the relationship between business and maintenance strategies, Int. J. Production Economics, 104, 214-229.
Pritsker, A. B., Sigal, C. E., and Hammesfahr, R. D. J. (1989), Network models for decision support, New York: Prentice-Hall.
Pritsker, A. B. (1990), Papers, experiences and perspectives, Lafayette, Indi-ana: Systems Publishing Corporation.
Pritsker, A. B., Oreilly, J. J., and LaVal, D. K. (1997), Simulation with Visual Slam and AweSim, New York: John Wiley and Sons.
Rooney, J. J., Vanden Heuvel, L. N., and Lorenzo, D. K. (2002), Reduce Human Error: How to analyze near misses and sentinel events, determine root causes and implement corrective actions, quality progress, 27-36.
Roux, O., Jamali, M. A., Kady, D. A., and Chatelet, E. (2008), Development of simulation and optimization platform to analyze maintenance policies performances for manufacturing systems, International, Journal of Computer Integrated Manufactur-ing-Industrial Engineering and Systems, 407-414.
Tone, K. (2002), A Slacks-Based Measure of Efficiency in Data Envelopment Analysis, European Journal of Operational Research, 143(1), 32-41, doi:10.10 16/S0377-2217(01)00324-1.
Sueyoshi, T. and Goto, M. (2010), Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment, European Journal of Operational Research, 684-693.
Yelling, E. and Machulack, G. (1996), A comparison of simulation modeling roles: business process reengineering VS. Manufacturing, SCSI, San Diego, CA, VSA, 29-33.
Wen, M., You, C., and Kang, R. (2010), A new ranking method to fuzzy data envelopment analysis, Computers and Mathematics with Applications, 59, 3398-3404.

