• Title/Summary/Keyword: experimental helicopter system

Search Result 41, Processing Time 0.041 seconds

Mount Design of Helicopter FLIR Sensor Using Experimental Dynamic Model (실험적 동적 모델을 이용한 헬기용 FLIR 센서의 마운트 설계)

  • 조기대
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1129-1136
    • /
    • 2004
  • The structural modification to install a heavy sensor was made at the front extremities of the foreign-produced helicopter operated in the Korea Navy Mounting the sensor directly to the nose structure is unlikely to be practical because it lowers a dynamic mode of the airframe close to rotor blade passing frequencies, leading to increased helicopter vibration. Unfortunately we have no information on dynamic characteristics of the imported helicopter. So the experimental modal model derived from shake testing on the overall airframe of a working helicopter was used to solve the sensor Installation problems. The sensitivity analysis was done to evaluate what the best of modification woo)d be. Simple ID model and experimental modal data for mount system with sensor were Incorporated into overall dynamic model to assess the effects of the sensor installation on helicopter. Modal testing for the modified helicopter shows that the airframe modes are sufficiently displaced from rotor passing frequencies. The mount system has been proven fight to be sufficiently stable to meet vibration-level requirement for all required operational profiles.

An Experimental Study for Material Properties of Elastomer Bearing Using Next Genration Helicopter rotor system (차세대 헬리콥터 로터용 탄성체베어링 소재 특성에 관한 실험적 연구)

  • 정정교;김영석;박건록;김두훈;이명규;김덕관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.325-329
    • /
    • 2003
  • Nowadays many peoples are using helicopter in various fields, not only military use but also common people applications such as air-measurement, photography, transportation of goods and persons, saving life and fire fighting etc. And it will be expected more popular than now. Most important part of helicopter to increasing performance and to reducing noise is rotor hub-system. Hub system consists of rotor-blade and rotor-hub. We participate to develop next-generation rotor hub system with elastomeric bearing, part of rotor hub. In this paper we introduce about the role and shape of elastomeric bearing in next-generation helicopter hub system. Then we study about bearing-material requirements and measuring methods. Finally we represent some experimental results.

  • PDF

Automatic Model Helicopter for using in the Remote Sensing (리모트 계측을 위한 소형 헬리콥터 개발)

  • Kim, Hee-Chul;Kang, Chul-Ung;Lim, Jong-Hwan;Kim, Seong-Gun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.168-171
    • /
    • 2003
  • We introduced a small-sized automatic model helicopter for using in the remote sensing. The feature of our helicopter system is that the helicopter system is realized using commercialized radio-controlled model helicopter, whose payload is 1.5 kg. Therefore, our system has may benefits when apply our system to practical tasks. The compactness and light-weight of our system is realized by the introduction of our original technique to suppress the vibration noise using a slimy material as well as the introduction of latest sensors and semiconductor products. Submerging the acceleration sensor into a slimy material, moise ratio is highly improved. In this paper, we show an experimental results for the effect of our orignal technique to remove the vibration noise of helicopter. The result of hovering flying test shows the effectiveness of our system.

  • PDF

A fuzzy-model-based controller for a helicopter system with 2 degree-of-freedom in motion (2 자유도 헬리콥터 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1949-1951
    • /
    • 2001
  • This paper deals with the control of a nonlinear experimental helicopter system by using the fuzzy-model-based control approach. The fuzzy model of the experimental helicopter system is constructed from the original nonlinear dynamic equations in the form of an affine Takagi-Sugeno (TS) fuzzy system. In order to design a feasible switching-type fuzzy-model-based controller, the TS fuzzy system is converted to a set of uncertain linear systems, which is used as a basic framework to synthesize the fuzzy-model-based controller.

  • PDF

A Decentralized Fuzzy Controller for Experimental Nonlinear Helicopter Systems (헬리콥터 시스템의 퍼지 분산 제어기 설계)

  • 김문환;이호재;박진배;차대범;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.141-144
    • /
    • 2001
  • This paper proposes a decentralized control technique for 2-dimensional experimental helicopter systems. The decentralized control technique is especially suitable in large-scale control systems. We derive the stabilization condition for the interconnected Takagi-Sugeno (75) fuzzy system using the rigorous tool - Lyapunov stability criterion and formulate the controller design condition in terms of linear matrix inequality (LMI). To demonstrate the feasibility of the proposed method, we include the experiment result as well as a computer simulation one, which strongly convinces us the applicability to the industry.

  • PDF

A Hovering Control of an Unmanned Helicopter Using Fuzzy Rules (Fuzzy규칙을 사용한 무인헬리콥터 호버링 제어)

  • Chae, H.S.;Chon, J.C.;Kim, B.S.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.525-527
    • /
    • 1998
  • The fuzzy-based autonomous position control system for hovering of an unmanned helicopter has been developed. An unmanned helicopter Is flying vehicle which can aviate freely even at narrow or hazardous space. The bottleneck of the full utilization of the unmanned helicopter is mainly on the control difficulty caused from its nonlinear and unstable characteristics. This paper presents a Fuzzy control technique to have the unmanned helicopter perform hovering. Experimental results of real unmanned helicopter control are included.

  • PDF

Multi-Mode Radar System Model Design for Helicopter (헬기탑재 다중모드 레이다 시스템 모델 설계)

  • Kwag, Young-Kil;Bae, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-212
    • /
    • 2003
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the conceptual design results of the multi-mode pulsed Doppler radar system testbed model for helicopter. Due to the inherent flight nature of the hovering vehicle which is flying in low-altitude and low speed, as well as rapid maneuvering, the moving clutters from the platform should be suppressed by using a special MTD (Moving Target Detector) processing. For the multi-mode radar system model design, the flight parameters of the moving helicopter platform were assumed: altitude of 3 Km, average cruising velocity of 150knots. The multi-mode operation capability was applied such as short-range, medium-range, and long-range depending on the mission of the vehicle. The nominal detection ranges is 30 Km for the testbed experimental model, but can be expanded up to 75 Km for the long range weather mode. The detection probability of each mode is also compared in terms of the signal-to noise ratio of each mode, and the designed radar system specifications ate provided as a design results.

  • PDF

A Decentralized Control Technique for Experimental Nonlinear Helicopter Systems (헬리콥터 시스템의 퍼지 분산 제어기 설계)

  • Kim, Moon-Hwan;Park, Jin-Bae;Lee, Ho-Jae;Cha, Dae-Bum;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.80-84
    • /
    • 2002
  • This paper proposes a decentralized control technique for 2-dimensional experimental helicopter systems. The decentralized control technique is especially suitable in large-scale control systems. We derive the stabilization condition for the interconnected Takagi-Sugeno (TS) fuzzy system using the rigorous tool-Lyapunov stability criterion and formulate the controller design condition in terms of linear matrix inequality (LMI). To demonstrate the feasibility of the proposed method, we include the experiment result as well as a computer simulation one, which strongly convinces us the applicability to the industry.

THE INVESTIGATION FOR UH-60 HOVERING ACOUSTIC NOISE CHARACTERISTIC ANALYSIS BY COMPUTATIONAL AERO-ACOUSTIC METHOD (전산공력소음해석을 통한 UH-60 제자리비행 공력소음 연구)

  • Park, N.E.;Woo, C.H.;Choi, G.M.;Kim, C.H.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.70-74
    • /
    • 2009
  • The helicopter development technology is improved by the increasing of computing power and advanced test facilities. The increasing efficiency of fuel consuming by the developing of improved lift-to-drag rotor system is the major issue, the noise reduction for ecology(civil area) and increase of survivability to reduce noise detection(battlefield) also are important. This investigation shows the helicopter external noise flight test methods, conventional military helicopter's(UH-60) experimental results and the numerical modeling method for aero-acoustic of rotor blade and the result of CAA(Computational Aero-Acoustic) for main rotor blade.

  • PDF

Attitude Control of Helicopter using Fuzzy Inference Technique

  • Lee, Joon-Tark;Lee, Oh-Keol;Shin, Song-Ho;Park, Doo-Hwan;Gon, Ha-Hong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.438-442
    • /
    • 1998
  • The helicopter system is non-linear and complex. Futhermore, because of absence of an accurate mathematical model, it is difficult accurately to control its attitude. But we can control the non-modeled system with the uncertainty and unstructure using the fuzzy control algorithm. Therefore, we apply optimized fuzzy controllers for the control of its elevation angle and azimuth one using expert's intuitions and knowledges. The simulation and experimental results of the hellicopter simulator CE150 with MATLAB shall be introduced.

  • PDF