• Title/Summary/Keyword: experimental hardware

Search Result 818, Processing Time 0.032 seconds

Development of Hardware-in-the-loop Simulator for Spacecraft Attitude Control using thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.3-36
    • /
    • 2008
  • The ground-based spacecraft simulator is a useful tool to realize various space missions and satellite formation flying in the future. Also, the spacecraft simulator can be used to develop and verify new control laws required by modern spacecraft applications. In this research, therefore, Hardware-in-the-loop (HIL) simulator which can be demonstrated the experimental validation of the theoretical results is designed and developed. The main components of the HIL simulator which we focused on are the thruster system to attitude control and automatic mass-balancing for elimination of gravity torques. To control the attitude of the spacecraft simulator, 8 thrusters which using the cold gas (N2) are aligned with roll, pitch and yaw axis. Also Linear actuators are applied to the HIL simulator for automatic mass balancing system to compensate for the center of mass offset from the center of rotation. Addition to the thruster control system and Linear actuators, the HIL simulator for spacecraft attitude control includes an embedded computer (Onboard PC) for simulator system control, Host PC for simulator health monitoring, command and post analysis, wireless adapter for wireless network, rate gyro sensor to measure 3-axis attitude of the simulator, inclinometer to measure horizontality and battery sets to independently supply power only for the simulator. Finally, we present some experimental results from the application of the controller on the spacecraft simulator.

  • PDF

The Design and Implementation of a Control System for TCSC in the KERI Analog Power Simulator

  • Jeon, Jin-Hong;Kim, Kwang-Su;Kim, Ji-Won;Oh, Tae-Kyoo
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.129-133
    • /
    • 2004
  • This paper deals with the design and implementation of a TCSC (Thyristor Controlled Series Capacitor) simulator, which is a module for an analog type power system simulator. Principally, it presents configuration of controller hardware/software and its experimental results. An analog type power system simulator consists of numerous power system components, such as various types of generator models, scale-downed transmission line modules, transformer models, switches and FACTS (Flexible AC Transmission System) devices. It has been utilized for the verification of the control algorithm and the study of system characteristics analysis. This TCSC simulator is designed for 50% line compensation rate and considered for damping resister characteristic analysis. Its power rate is three phase 380V 20kVA. For hardware extendibility, its controller is designed with VMEBUS and its main CPU is TMS320C32 DSP (Digital Signal Processor). For real time control and communications, its controller is applied to the RTOS (Real Time Operation System) for multi-tasking. This RTOS is uC/OS-II. The experimental results of capacitive mode and inductive mode operations verify the fundamental operations of the TCSC.

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

Relative Navigation Algorithm Using PSD and Heterogeneous Sensor Fusion (PSD와 이종 센서 융합을 이용한 상대 항법 알고리즘)

  • Kim, Dongmin;Yang, Seungwon;Kim, Domyung;Suk, Jinyoung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.513-522
    • /
    • 2020
  • This paper describes a relative navigation algorithm using PSD(Position Sensitive Detector) and heterogeneous sensor fusion. In order to perform relative navigation between a target and a chaser, a hardware system is constructed and simulations are conducted, using the relative navigation algorithm considering the hardware system. By analyzing errors through the simulations, advantages of using the heterogeneous sensor fusion are found. Finally, navigation performance is verified under an experimental environment established to obtain sensor data from the hardware system for data post-processing.

Verification of an Autonomous Decentralized UPS System with Fast Transient Response Using a FPGA-Based Hardware Controller

  • Yokoyama, Tomoki;Doi, Nobuaki;Ishioka, Toshiya
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.507-515
    • /
    • 2009
  • This paper proposes an autonomous decentralized control for a parallel connected uninterruptible power supply (UPS) system based on a fast power detection method using a FPGA based hardware controller for a single phase system. Each UPS unit detects only its output voltage and current without communications signal exchange and a quasi dq transformation method is applied to detect the phase and amplitude of the output voltage and the output current for the single phase system. Fast power detection can be achieved based on a quasi dq transformation, which results in a realization of very fast transient response under rapid load change. In the proposed method, the entire control system is implemented in one FPGA chip. Complicated calculations are assigned to hardware calculation logic, and the parallel processing circuit makes it possible to realize minimized calculation time. Also, an Nios II CPU core is implemented in the same FPGA chip, and the software can be applied for non-time critical calculations. Applying this control system, an autonomous decentralized UPS system with very fast transient response is realized. Feasibility and stable operation are confirmed by means of an experimental setup with three UPSs connected in parallel. Also, rapid load change is applied and excellent performance of the system is confirmed in terms of transient response and stability.

Hardware-in-the-loop Simulation of CNC-controlled Feed Drives (CNC 제어 이송계의 Hardware-in-the-loop 시뮬레이션)

  • Lee, Wonkyun;Lee, Chan-Young;Kim, Joo-Yeong;Song, Chang Kyu;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • Design and application of hardware-in-the-loop simulation (HILS) for design of CNC-controlled machine tool feed drives is discussed. The CNC machine tool is a complex mechatronics system where the complexity results from the software-based controller composed of a variety of functionalities and advanced control algorithms. Therefore, using a real CNC controller in the control simulation has merits considering the efforts and accuracy of the simulation modeling. In this paper challenges in HILS for a CNC controlled feed drive, such as minimization of time delay and transmission error that are caused by discretization of the feed drive model, is elaborated. Using an experimental HILS setup of a machine tool feed drive applications in controller gain selection and CNC diagnostics are presented.

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

A Hardware-in-the-loop Platform for Modular Multilevel Converter Simulations

  • Liu, Chongru;Tian, Pengfei;Wang, Yu;Guo, Qi;Lin, Xuehua;Wang, Jiayu
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1698-1705
    • /
    • 2016
  • In this paper, a hardware-in-the-loop simulation platform for MMCs is established, which connects a real time digital simulator (RTDS) and a designed MMC controller with optical fiber. In this platform, the converter valves are simulated with a small time step of 2.5 microsecond in the RTDS, and multicore technology is implemented for the controller so that the parallel valve control is distributed between different cores. Therefore, the designed controller can satisfy the requirements of real-time control. The functions of the designed platform and the rationality for the designed controller are verified through experimental tests. The results show that different modulation modes and various control strategies can be implemented in the simulation platform and that each control objective can been tracked accurately and with a fast dynamic response.

An L1 Cache Prefetching Scheme using Excessively Aggressive Prefetchering and a Small Direct-mapped Filtering Cache (공격적인 선인출 및 직접 사상 필터링을 이용한 L1 캐시 선인출 기법)

  • Chon, Young-Suk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.11
    • /
    • pp.836-852
    • /
    • 2006
  • This paper proposes an L1 cache prefetch scheme using an excessively aggressive hardware prefetcher and a hardware prefetch filter having a small direct-mapped filtering cache. A quantitative analysis method has been introduced and applied to analyze nonideal effects of aggressive cache prefetching. From those analysis results, the structure and algorithm of a prefetch filter has been derived and simulated, and the overall system performance has been measured using a cycle-by-cycle cache simulator. Experimental results show that the proposed scheme improves the overall system performance by 18% on the average over several benchmarks