• Title/Summary/Keyword: experimental dynamics

Search Result 1,818, Processing Time 0.027 seconds

Tumbling Dynamics of Rod-like and Semi-flexible Polymers in Simple Shear and Mixed Flows

  • Lee, Joo-Sung;Kim, Ju-Min
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.807-812
    • /
    • 2009
  • In this work, we focus on the tumbling dynamics of rod-like and semi-flexible polymers in mixed flows, which vary from simple shear to pure rotation. By employing a bead-rod model, the tumbling pathways and periods are examined with a focus on the angular distribution of their orientation. Under the mixed flows, the tumbling dynamics agreed well with earlier studies and confirmed the predicted scaling laws. We found that the angular distribution deviates from that of shear flow as the flow type approaches pure rotation. Finally, we investigated the angular distribution of $\lambda$-DNA in a shear flow and found that the present numerical simulations were in quantitative agreement with the previous experimental data.

Dynamics of Resonant Energy Transfer in OH Vibrations of Liquid Water

  • Yang, Mi-No
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.885-892
    • /
    • 2012
  • Energy transfer dynamics of excited vibrational energy of OH stretching bonds in liquid water is theoretically studied. With time-dependent vibrational Hamiltonian obtained from a mixed quantum/classical calculation, we construct a master equation describing the energy transfer dynamics. Survival probability predicted by the master equation is compared with numerically exact one and we found that incoherent picture of energy transfer is reasonably valid for long-time population dynamics. Within the incoherent picture, we assess the validity of independent pair approximation (IPA) often introduced in the theoretical models utilized in the analysis of experimental data. Our results support that the IPA is almost perfectly valid as applied for the vibrational energy transfer in liquid water. However, proper incorporation of radial and orientational correlations between two OH bonds is found to be critical for a theory to be quantitatively valid. Consequently, it is suggested that the Forster model should be generalized by including the effects of the pair correlations in order to be applied for vibrational energy transfer in liquid water.

A Study on Performance Improvement of Biometric Systems Utilizing Keypad Dynamics (PIN을 이용한 Biometric System의 성능향상에 관한 연구 - Keypad Dynamics)

  • Lee, Hyun-Youl;Shin, Chang-Ho;Jung, Hee-Cheol;Choi, Hwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.821-823
    • /
    • 1999
  • This paper describes a study on a person identification system which can improve currently available biometric systems. In the procedure of PIN(Personal Identification Number) input, holding time, interkey time between key presses are measured and normalized. Person identification is performed by matching using Euclidean distance of these punching dynamics. The experimental results show the possibility of improvement of the overall system performance when keypad dynamics feature is applied to the biometric systems which take PIN input using keypads.

  • PDF

Chatter Prediction in Endmilling Using Dynamic Cutting Force Modeling (엔드밀링에서의 동절삭력 모델을 이용한 채터예측)

  • Hwang , Cheol-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.104-115
    • /
    • 1999
  • Cutting process, in general, is a closed-loop system consisting of structural dynamics and cutting dynamics, with the cutting forces and the relative displacements between tool and workpiece being the associated variables. There have been a number of works on modeling the cutting process of endmilling, most of which assumed that either one of the tool or workpiece be negligible in tis displacement. In this paper, the relative displacement between tool and workpiece was considered. The proposed model used experimental modal analysis for structural dynamics and an instantaneous uncut chip thickness model for cutting dynamics. Simulation of the model, a time varying cutting system, was performed using 4th order Runge-Kutta method. Subsequent simulation results were utilized to predict chatter over a variety of experiments in slotting operation, showing good agreement.

  • PDF

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

Mini-Batch Ensemble Method on Keystroke Dynamics based User Authentication

  • Ho, Jiacang;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.40-46
    • /
    • 2016
  • The internet allows the information to flow at anywhere in anytime easily. Unfortunately, the network also becomes a great tool for the criminals to operate cybercrimes such as identity theft. To prevent the issue, using a very complex password is not a very encouraging method. Alternatively, keystroke dynamics helps the user to solve the problem. Keystroke dynamics is the information of timing details when a user presses a key or releases a key. A machine can learn a user typing behavior from the information integrate with a proper machine learning algorithm. In this paper, we have proposed mini-batch ensemble (MIBE) method which does the preprocessing on the original dataset and then produces multiple mini batches in the end. The mini batches are then trained by a machine learning algorithm. From the experimental result, we have shown the improvement of the performance for each base algorithm.

Molecular Dynamics Simulation Study of the Ionic Mobility of OH- Using the OSS2 Model

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1154-1158
    • /
    • 2006
  • Anomalously high ionic mobilities of H+ and $OH^-$ are owing to the transfer of $H^+$ by the Grotthus chain mechanism. Molecular dynamics simulations for the system of 215 water including $OH^-$ ion at 298.15 K using the OSS2 model [J. Chem. Phys. 109, 5547 (1998)] as a dissociable water model with the use of Ewald summation were carried out in order to study the dynamics of $OH^-$ in water. The calculated ionic mobility of $OH^-$ is in good agreement with the experimental result and the Grotthus chain mechanism is fully understood.

Molecular Dynamics Study for Improving the Adhesion of Paint (도료의 부착성 개선을 위한 분자동역학적 연구)

  • Yang, Young-Joon;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.932-938
    • /
    • 2007
  • The interaction between adherent molecules and gas molecules was modeled in molecular scale and simulated by the molecular dynamics method in order to understand the evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantify and gas molecular collisions because the industrial oil has too complex structures of fatty acid. The effects of adherent quantify, gas temperature and surface temperature for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on surface temperature shown in the experimental results.

A Study on Theoretical Improvement of Causal Mapping for Dynamic Analysis and Design (동태적 분석 및 설계를 위한 인과지도 작성법의 한계와 개선방안에 관한 연구)

  • Jung, Jae-Un;Kim, Hyun-Soo
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.33-60
    • /
    • 2009
  • This study explores the limitation in making a causal model through an existing case and proposes an alternative plan to improve a theoretical system of causation modeling. To make a dynamic and actual model, several principles are needed such as reality based analysis of system structures and dynamics, consistent expression of causations, conversion of numerical formulas to causal relations, classification and arrangement of variables by size of concept, etc. However, it is hard to find cases to apply these considerations from existing models in System Dynamics. Therefore, this study verifies errors of derived models from literatures and proposes principles and guides that should be considered to make a sound dynamic model on a causal map. It contributes to making an opportunity for exciting public opinion to improve theory about causal maps, yet it has limitation that the study does not advance forward to the experimental step. For future study, it plans to make up by classifying and leveling causal variables, developing a dynamic BSC model.

  • PDF

A simulation model of valve train dynamics for cam profile optimizations (캠 형상 최적설계를 위한 밸브 트레인 동특성 해석 모델)

  • 김도중
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1993
  • A numerical modeling technique is proposed for computer simulations of high speed valve train dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. In addition to that, steady state response of the valve dynamics can be obtained by just one cycle simulation. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental result prove the computer model developed here is accurate and also computationally efficient. The model is especially useful for cam profile optimizations.

  • PDF