DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Study of the Ionic Mobility of OH- Using the OSS2 Model

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2006.08.20

Abstract

Anomalously high ionic mobilities of H+ and $OH^-$ are owing to the transfer of $H^+$ by the Grotthus chain mechanism. Molecular dynamics simulations for the system of 215 water including $OH^-$ ion at 298.15 K using the OSS2 model [J. Chem. Phys. 109, 5547 (1998)] as a dissociable water model with the use of Ewald summation were carried out in order to study the dynamics of $OH^-$ in water. The calculated ionic mobility of $OH^-$ is in good agreement with the experimental result and the Grotthus chain mechanism is fully understood.

Keywords

References

  1. Zimmerman, G. H.; Gruszkiewicz, M. S.; Wood, R. H. J. Phys. Chem. 1995, 99, 11612 https://doi.org/10.1021/j100029a045
  2. Ho, P. C.; Palmer, D. A. J. Solution Chem. 1996, 25, 711 https://doi.org/10.1007/BF00973780
  3. Lee, S. H.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. Chem. Phys. Lett. 1998, 293, 289 https://doi.org/10.1016/S0009-2614(98)00766-0
  4. Lee, S. H.; Cummings, P. T. J. Chem. Phys. 2000, 112, 864 https://doi.org/10.1063/1.480613
  5. Tuckerman, M. E.; Chandra, A.; Marx, D. Acc. Chem. Res. 2006, 39, 151 https://doi.org/10.1021/ar040207n
  6. Tuckerman, M. E.; Marx, D.; Parrinello, M. Nature(London) 2002, 417, 925 https://doi.org/10.1038/nature00797
  7. Zhu, Z. W.; Tuckerman, M. E. J. Phys. Chem. B 2002, 106, 8009 https://doi.org/10.1021/jp020866m
  8. Asthagiri, D.; Pratt, L. R.; Kress, J. D.; Gomez, M. A. Proc. Natl. Acad. Sci. 2004, 101, 7229 https://doi.org/10.1073/pnas.0401696101
  9. Stillinger, F. H.; David, C. W. J. Chem. Phys. 1978, 69, 1473 https://doi.org/10.1063/1.436773
  10. Stillinger, F. H.; David, C. W. J. Chem. Phys. 1980, 73, 3384 https://doi.org/10.1063/1.440534
  11. Stillinger, F. H.; Weber, T. A. Chem. Phys. Lett. 1981, 79, 259 https://doi.org/10.1016/0009-2614(81)80199-6
  12. Weber, T. A.; Stillinger, F. H. J. Phys. Chem. 1982, 86, 1314 https://doi.org/10.1021/j100397a020
  13. Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 76, 4028 https://doi.org/10.1063/1.443523
  14. Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 77, 4150 https://doi.org/10.1063/1.444324
  15. Ojame, L.; Shavitt, I.; Singer, S. J. J. Chem. Phys. 1998, 109, 5547 https://doi.org/10.1063/1.477173
  16. Singer, S. J.; McDonald, S.; Ojame, L. J. Chem. Phys. 2000, 112, 710 https://doi.org/10.1063/1.480603
  17. Lee, S. H. Mol. Sim. 2003, 29, 211 https://doi.org/10.1080/0892702031000089678
  18. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950 https://doi.org/10.1063/1.465441
  19. Smith, D. E.; Dang, L. X. J. Chem. Phys. 1994, 100, 3757 https://doi.org/10.1063/1.466363
  20. de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Proc. R. Soc. London 1980, A373, 27
  21. Anastasiou, N.; Fincham, D. Comput. Phys. Commun. 1982, 25, 159 https://doi.org/10.1016/0010-4655(82)90032-7
  22. Private communication to Ojame, L
  23. Gauss, K. F. J. Reine Angew. Math. 1829, IV, 232
  24. Gear, W. C. Numerical Initial Value Problems in Ordinary Differential Equations; Prentice-hall: Englewood Cliffs, NJ, 1971
  25. Lee, S. H. Bull. Korean Chem. Soc.. 2002, 23, 107 https://doi.org/10.5012/bkcs.2002.23.1.107
  26. Lee, S. H. Bull. Korean Chem. Soc.. 2001, 22, 847

Cited by

  1. Protons and Hydroxide Ions in Aqueous Systems vol.116, pp.13, 2016, https://doi.org/10.1021/acs.chemrev.5b00736
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Cell Selectivity of Arenicin-1 and Its Derivative with Two Disulfide Bonds vol.29, pp.6, 2006, https://doi.org/10.5012/bkcs.2008.29.6.1190
  4. Molecular Simulations for Anti-amyloidogenic Effect of Flavonoid Myricetin Exerted against Alzheimer’s β-Amyloid Fibrils Formation vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1505
  5. H+ Ion Migration in Water Filled Carbon Nanotube vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.700
  6. Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq vol.31, pp.6, 2010, https://doi.org/10.5012/bkcs.2010.31.6.1519
  7. The Radial Distribution Functions of the Scaled OSS2 Water vol.56, pp.6, 2006, https://doi.org/10.5012/jkcs.2012.56.6.669
  8. Effect of water content on microstructures and oxygen permeation in PSiMA–IPN–PMPC hydrogel: a molecular simulation study vol.78, pp.None, 2012, https://doi.org/10.1016/j.ces.2011.11.020