Browse > Article
http://dx.doi.org/10.5012/bkcs.2006.27.8.1154

Molecular Dynamics Simulation Study of the Ionic Mobility of OH- Using the OSS2 Model  

Lee, Song-Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
Anomalously high ionic mobilities of H+ and $OH^-$ are owing to the transfer of $H^+$ by the Grotthus chain mechanism. Molecular dynamics simulations for the system of 215 water including $OH^-$ ion at 298.15 K using the OSS2 model [J. Chem. Phys. 109, 5547 (1998)] as a dissociable water model with the use of Ewald summation were carried out in order to study the dynamics of $OH^-$ in water. The calculated ionic mobility of $OH^-$ is in good agreement with the experimental result and the Grotthus chain mechanism is fully understood.
Keywords
Molecular dynamics simulation; OSS2 potential; Ionic mobility of $OH^-$; Grotthus chain mechanism;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Lee, S. H. Bull. Korean Chem. Soc.. 2002, 23, 107   DOI   ScienceOn
2 Zimmerman, G. H.; Gruszkiewicz, M. S.; Wood, R. H. J. Phys. Chem. 1995, 99, 11612   DOI   ScienceOn
3 Ho, P. C.; Palmer, D. A. J. Solution Chem. 1996, 25, 711   DOI
4 Stillinger, F. H.; David, C. W. J. Chem. Phys. 1980, 73, 3384   DOI
5 Zhu, Z. W.; Tuckerman, M. E. J. Phys. Chem. B 2002, 106, 8009   DOI   ScienceOn
6 Asthagiri, D.; Pratt, L. R.; Kress, J. D.; Gomez, M. A. Proc. Natl. Acad. Sci. 2004, 101, 7229   DOI   ScienceOn
7 Stillinger, F. H.; Weber, T. A. Chem. Phys. Lett. 1981, 79, 259   DOI   ScienceOn
8 Weber, T. A.; Stillinger, F. H. J. Phys. Chem. 1982, 86, 1314   DOI
9 Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 76, 4028   DOI
10 Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 77, 4150   DOI
11 Ojame, L.; Shavitt, I.; Singer, S. J. J. Chem. Phys. 1998, 109, 5547   DOI   ScienceOn
12 Singer, S. J.; McDonald, S.; Ojame, L. J. Chem. Phys. 2000, 112, 710   DOI   ScienceOn
13 Lee, S. H. Mol. Sim. 2003, 29, 211   DOI
14 Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950   DOI
15 Private communication to Ojame, L
16 Smith, D. E.; Dang, L. X. J. Chem. Phys. 1994, 100, 3757   DOI   ScienceOn
17 de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Proc. R. Soc. London 1980, A373, 27
18 Anastasiou, N.; Fincham, D. Comput. Phys. Commun. 1982, 25, 159   DOI   ScienceOn
19 Gauss, K. F. J. Reine Angew. Math. 1829, IV, 232
20 Lee, S. H.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. Chem. Phys. Lett. 1998, 293, 289   DOI   ScienceOn
21 Lee, S. H.; Cummings, P. T. J. Chem. Phys. 2000, 112, 864   DOI   ScienceOn
22 Tuckerman, M. E.; Chandra, A.; Marx, D. Acc. Chem. Res. 2006, 39, 151   DOI   ScienceOn
23 Gear, W. C. Numerical Initial Value Problems in Ordinary Differential Equations; Prentice-hall: Englewood Cliffs, NJ, 1971
24 Lee, S. H. Bull. Korean Chem. Soc.. 2001, 22, 847
25 Tuckerman, M. E.; Marx, D.; Parrinello, M. Nature(London) 2002, 417, 925   DOI   ScienceOn
26 Stillinger, F. H.; David, C. W. J. Chem. Phys. 1978, 69, 1473   DOI