• Title/Summary/Keyword: experimental dynamics

Search Result 1,818, Processing Time 0.033 seconds

An Introduction to Kinetic Monte Carlo Methods for Nano-scale Diffusion Process Modeling (나노 스케일 확산 공정 모사를 위한 동력학적 몬테칼로 소개)

  • Hwang, Chi-Ok;Seo, Ji-Hyun;Kwon, Oh-Seob;Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.25-31
    • /
    • 2004
  • In this paper, we introduce kinetic Monte Carlo (kMC) methods for simulating diffusion process in nano-scale device fabrication. At first, we review kMC theory and backgrounds and give a simple point defect diffusion process modeling in thermal annealing after ion (electron) implantation into Si crystalline substrate to help understand kinetic Monte Carlo methods. kMC is a kind of Monte Carlo but can simulate time evolution of diffusion process through Poisson probabilistic process. In kMC diffusion process, instead of. solving differential reaction-diffusion equations via conventional finite difference or element methods, it is based on a series of chemical reaction (between atoms and/or defects) or diffusion events according to event rates of all possible events. Every event has its own event rate and time evolution of semiconductor diffusion process is directly simulated. Those event rates can be derived either directly from molecular dynamics (MD) or first-principles (ab-initio) calculations, or from experimental data.

A Reduction in Pressure Ripples of Axial Piston Pumps of Bent Axis by Phase Interface (위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력 맥동 감소)

  • Kim, Kyung-Hoon;Park, Kyung-Seok;Jang, Ju-Sub;Kim, Bong-Hwan; Lee, Kyu-Won;Son, Kwon;Shin, Min-Ho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1261-1265
    • /
    • 2003
  • Axial piston pumps of bent axis have been commonly used in hydraulic systems because of high pressure level. best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the axial piston pumps of bent axis require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the axial piston pumps of bent axis was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a paralle linel could reduce the discharge pressure wave of the pump well. The analysis model of the axial piston pumps of bent axis developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

  • PDF

Telomeric Dynamics and Telomerase Activity in Early Bovine Embryos (소의 초기 배 발생단계별 Telomeric DNA 함량 및 Telomerase Activity 분석)

  • Jung, Yei-Hwa;Lee, Soo-Hee;Cho, Sang-Rae;Kong, Il-Keun;Cho, Jae-Dong;Sohn, Sea-Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.2
    • /
    • pp.101-109
    • /
    • 2009
  • Objective: This study was carried out to analyze the amount of telomeric DNA and telomerase activity in early bovine embryos. Methods: The amount of telomeric DNA in early bovine embryos at the 8 cell, morula and blastocyst stages was analyzed by Quantitative Fluorescence In Situ Hybridization (Q-FISH) technique using a bovine telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol (TRAP assay). Results: The relative amount of telomeric DNA in early bovine embryos was gradually increased from 8 cell to blastocyst stage. It was not significantly associated with the grade of embryo quality. While telomerase activity was detected in the early bovine embryos at these stages, it significantly increased at morula stage and showed maximum activity at the blastocyst stage. Conclusion: The amount of telomeric DNA and the telomerase activity of bovine embryos increase during the progression of early embryogenesis, suggesting a positive correlation between telomeric DNA and telomerase activity. The telomerase activity seems to increase to maintain the levels of telomeric DNA through embryo development which are required for extensive cell division.

Numerical Analysis of Added Resistance and Vertical Ship Motions in Waves for KVLCC2 (KVLCC2에 대한 파랑 중 부가저항과 수직운동에 대한 수치해석)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.564-575
    • /
    • 2016
  • The present study provides numerical simulations to predict the added resistance and ship motion of the KVLCC2 in regular waves using the unsteady Reynolds-Averaged Navier-Stokes (URANS) and 3-D potential methods. This numerical analysis is focused on added resistance and vertical ship motions (heave and pitch) under a wide range of wave conditions at three ship speeds (design, operating and zero speeds). Firstly, the characteristics of the CFD and 3-D potential flow methods are presented to predict added resistance and ship motions in regular waves taking into account various wave conditions at design speed to provide a validation study as well as at operating and zero speeds. Secondly, analyses of added resistance and ship motion with unsteady wave patterns and time history results as simulated by CFD were performed at each ship speed. Systematic validation and verifications of the numerical computations in this study were made against available Experimental Fluid Dynamics (EFD) data including grid convergence tests to demonstrate that reliable numerical results were obtained for the prediction of added resistance and ship motion in waves. Relationships between added resistance, vertical motion and changes in ship speeds were also found.

A Study of Sloshing Tank on Vessel Motions with Various Baffle Clearance (탱크 내 격벽에 의한 간극 변화가 선박 운동에 미치는 영향 연구)

  • Kim, Kyung Sung;Yu, Sunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.796-802
    • /
    • 2018
  • The effects of inner liquid sloshing on vessel motions are a well-known factor. It was investigated experimentally and numerically. In this regard, the study of many efforts to reduce natural phenomena of vessel motions by adopting special devices especially for roll motions. Among many devices, inserting baffles in the inner liquid tank is very common. In this study, one investigated the vessel motions with inner sloshing tanks with baffles inside. For the numerical simulation, one employed a dynamically coupled program between boundary-element-method-based vessel motion analysis program and a particle-based computational fluid dynamics program. Comparing corresponding experimental results validated the dynamically coupled program. The validated coupled program was used to simulate vessel motions, including sloshing effects with various lengths of inner baffles. The simulation results show that not only the filling ratio of inner liquid, but also the length of clearance due to baffles influenced the vessel motions. The significant point of this study was that the natural frequency of vessel motions can be maintained irrespective of the amount of filling ratio through adjustment of the clearance. In a future study, the effects of various numbers of baffles with various clearances would be conducted to percuss the possibility of vessel motion control with inner liquid sloshing effects.

Construction of a Simple Bi-trophic Microcosm System Using Standard Test Species (Pseudokirchneriella subcapitata and Daphnia magna) for Testing Chemical Toxicities (화학물질에 대한 독성시험 bi-trophic microcosm 구축에 있어 표준시험생물 녹조류 (Pseudokirchneriella subcapitata)와 물벼룩 (Daphnia magna)의 개체군 특성 연구)

  • Sakamoto, Masaki;Mano, Hiroyuki;Hanazato, Takayuki;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.228-235
    • /
    • 2016
  • Aquatic ecosystems are receiving various harmful effects due to anthropogenic chemical pollutions. To protect wildlife, risk assessments of the chemicals are conducted using reference indexes of toxicity estimated by species-level laboratory tests and/or micro-/mesocosm community-level studies. However, the existing micro-/mesocosm communities are structurally too complicated, and it is also difficult to compare the experimental results directly with those from species-level tests. Here, we developed a procedure of a simple bi-trophic microcosm experiment which contains the common species (a green algae, Pseudokirchneriella subcapitata and a cladoceran, Daphnia magna) for testing chemical toxicities. For the proper operation of bitrophic microcosm experiment, the minimum required concentration of primary producer (P. subcapitata) is $5{\times}10^5cells\;mL^{-1}$. The microcosm system showed higher stability when the initially introduced D. magna population was composed of neonates (<24-h old) than adults and those mixture. This simple microcosm system would be an applicable tool to estimate the disturbing impacts of pollutants on plant-herbivore interactions, and linking the species- and population-/community level risk assessments in the future studies.

Reinterpretation of the protein identification process for proteomics data

  • Kwon, Kyung-Hoon;Lee, Sang-Kwang;Cho, Kun;Park, Gun-Wook;Kang, Byeong-Soo;Park, Young-Mok
    • Interdisciplinary Bio Central
    • /
    • v.1 no.3
    • /
    • pp.9.1-9.6
    • /
    • 2009
  • Introduction: In the mass spectrometry-based proteomics, biological samples are analyzed to identify proteins by mass spectrometer and database search. Database search is the process to select the best matches to the experimental mass spectra among the amino acid sequence database and we identify the protein as the matched sequence. The match score is defined to find the matches from the database and declare the highest scored hit as the most probable protein. According to the score definition, search result varies. In this study, the difference among search results of different search engines or different databases was investigated, in order to suggest a better way to identify more proteins with higher reliability. Materials and Methods: The protein extract of human mesenchymal stem cell was separated by several bands by one-dimensional electrophorysis. One-dimensional gel was excised one by one, digested by trypsin and analyzed by a mass spectrometer, FT LTQ. The tandem mass (MS/MS) spectra of peptide ions were applied to the database search of X!Tandem, Mascot and Sequest search engines with IPI human database and SwissProt database. The search result was filtered by several threshold probability values of the Trans-Proteomic Pipeline (TPP) of the Institute for Systems Biology. The analysis of the output which was generated from TPP was performed. Results and Discussion: For each MS/MS spectrum, the peptide sequences which were identified from different conditions such as search engines, threshold probability, and sequence database were compared. The main difference of peptide identification at high threshold probability was caused by not the difference of sequence database but the difference of the score. As the threshold probability decreases, the missed peptides appeared. Conversely, in the extremely high threshold level, we missed many true assignments. Conclusion and Prospects: The different identification result of the search engines was mainly caused by the different scoring algorithms. Usually in proteomics high-scored peptides are selected and low-scored peptides are discarded. Many of them are true negatives. By integrating the search results from different parameter and different search engines, the protein identification process can be improved.

Practical scaling method for underwater hydrodynamic model test of submarine

  • Moonesun, Mohammad;Mikhailovich, Korol Yuri;Tahvildarzade, Davood;Javadi, Mehran
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude's law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn't surface wave effect and therefore, Froude's law couldn't be used. Reynold's similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold's similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold's similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

Effects of Cephalic Glucopenia on Insulin and Glucagon Secretion in Central Nervous System-Intact Pancreas Perfused Rats (중추신경이 온전한 쥐의 Cephalic Glucopenia가 인슐린과 글루카곤 분비에 미치는 영향)

  • Hyun Ju Choi
    • Biomedical Science Letters
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2000
  • In situ brain-pancreas perfusion was performed on male adult Sprague-Dawley rats, of which the central nervous systems (CNS) were intact during the perfusion procedure. The modified Krebs-Ringer buffer with 100 mg/dL of glucose and 20 mM of arginine was perfused for 30 min. In the experimental groups, a cephalic glucopenia was induced at 0 min (GLP1 group) or at 16 min (GLP2 group). The glucopenia was not induced in the control (CONT group). Insulin and glucagon concentrations in the effluent samples from the pancreas were measured using a RIA method. In all three groups, the first and second phases in the dynamics of the insulin and glucagon secretion were observed, which was a typical biphasic secretory pattern. The amount of insulin secretion tended to decrease in the GLP1 and GLP2 groups, but there was no statistically significant difference among the groups. However, the amount of glucagon secretion during 0~15 min of the perfusion period in the GLP1 group was greater as compared to the CONT group (p<0.05). The amount of glucagon secretion during 16~30 min of the perfusion period in the GLP2 group tended to be greater as compared to the CONT group, however there was no statistical significance. These data indicate that the cephalic glucopenia stimulates the direct secretion of glucagon from the pancreas during the early period of perfusion in the CNS-intact pancreatic perfused rats.

  • PDF

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.