• 제목/요약/키워드: experimental design method

검색결과 5,406건 처리시간 0.029초

다수목적을 위한 2단계 실험 (Two-Stage Experimental Design for Multiple Objectives)

  • 장대흥;김영일
    • 응용통계연구
    • /
    • 제28권1호
    • /
    • pp.93-102
    • /
    • 2015
  • D-최적 등을 위시한 최적실험은 비선형모형인 경우 추정을 하여야할 모수에 의존하는 문제점이 존재한다. 따라서 기본적으로 문헌에서는 모수추정을 위해서는 순차실험을 제안한다. 본 연구에서는 2단계 실험설계를 모수추정의 사례를 포함한 다양한 환경 하에서의 사용방법을 알아보았다. 본 연구에서 제안한 내용은 단계의 수나 구체적인 실험기준의 숫자에 상관없이 적용되는 범용적인 기준이다. 본 연구는 2단계 실험에서 3개 이상의 실험목적을 가지고 있는 경우 하이브리드(hybrid)방법을 제안하였다. 모든 실험은 근사실험설계의 형태로 논의되었다.

Optimization of Magnet Pole of BLDC Motor by Experimental Design Method

  • Kim, Jee-Hyun;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권2호
    • /
    • pp.84-89
    • /
    • 2003
  • The finite element method (FEM) is typically used in the process of motor design. However, the FEM requires computation time, Therefore, decreasing the number of FEM simulations may also decrease the simulation cost. Several optimal design methods overcoming this problem have been recently studied. This paper investigates the optimal design of the magnet pole of a BLDC motor through reducing simulation cost. The optimization minimizes the magnet volume and limits the average and cogging torques to certain values. In this paper, the response surface methodology and Taguchi's table for reducing the number of FEM simulations are used to approximate two constraints. The optimization result shows that the presented strategy is satisfactorily performed.

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.

실험계획법을 이용한 반도체용 대구경 스테인레스관의 내경 가공에 관한 연구 (A study on the Internal machining of a large-diameter Stainless pipe for Semiconductor Using Experimental Design Method)

  • 김창근;이은상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.71-76
    • /
    • 2003
  • This paper describes the characteristic of a large-diameter pipe to obtain smooth surface using Electropolishing after grinding using a non-woven fabric. Grinding using a non-woven fabric is possible under lower load and fine effect comparing with Wheel grinding. Also, the ion from the surface of the metal is eliminated by means of an electrical potential and current in Electropolishing. Electropolishing is used for leveling the surface, improving the physical appearance of the part, promoting corrosion properties and reducing contamination and adhesion of the surface. Therefore, the aim of the present study is to investigate the internal machining of a large-diameter pipe for semiconductor using experimental design method.

  • PDF

실험 계획법을 이용한 $Al(OH)_3$ 첨가량에 따른 고무의 난연 특성 연구 (The Study on the Flame Retardancy of Rubber according to $Al(OH)_3$ Addition Using Experimental Design Method)

  • 민영초;강윤진;김기영;강경식
    • 대한안전경영과학회지
    • /
    • 제10권4호
    • /
    • pp.121-126
    • /
    • 2008
  • The effect of $Al(OH)_3$ on physical, thermal, and retardant property of rubber was studied. It was analyzed by statistical experimental design method with one way array to confirm the effect of factors. Physical characteristics, thermal pyrolysis temperature, and combustion time were considered as the properties. The amount of $Al(OH)_3$ addition was chosen as significant parameter. As the result of ANOVA analysis, thermal pyrolysis temperature increased and combustion time decreased with increasing of $Al(OH)_3$.

실험 계획법에 기반한 키넥트 센서의 최적 깊이 캘리브레이션 방법 (Optimal Depth Calibration for KinectTM Sensors via an Experimental Design Method)

  • 박재한;배지훈;백문홍
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1003-1007
    • /
    • 2015
  • Depth calibration is a procedure for finding the conversion function that maps disparity data from a depth-sensing camera to actual distance information. In this paper, we present an optimal depth calibration method for Kinect$^{TM}$ sensors based on an experimental design and convex optimization. The proposed method, which utilizes multiple measurements from only two points, suggests a simplified calibration procedure. The confidence ellipsoids obtained from a series of simulations confirm that a simpler procedure produces a more reliable calibration function.

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.

Evaluation of the Block Effects in Response Surface Designs with Random Block Effects over Cuboidal Regions

  • Park, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.741-757
    • /
    • 2000
  • In may experimental situations, whenever a block design is used, the block effect is usually considered to be fixed. There are, however, experimental situations in which it should be treated as random. The choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of he prediction variance even if the experimental runs re the same. Therefore, care should be exercised in the selection of blocks. In this paper, in the presence of a random block effect, we propose a graphical method or evaluating the effect of blocking in response surface designs using cuboidal regions. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout all experimental regions of interest when this region is cuboidal, and compare the block effects in the cases of the orthogonal and non-orthogonal block designs, respectively.

  • PDF

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

항만투자분석을 위한 실험계획법 : 산물터미널에서의 사례연구 (EXPERIMENTAL DESIGN FOR PORT INVESTMENT ANALYSIS: A CASE STUDY IN A BULK TERMINAL)

  • Chang, Young-Tae
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.72-76
    • /
    • 2001
  • Experimental design in simulation provides an efficient way of economizing simulation runs since a considerable number of simulation runs that originally were planned can be reduced by this approach. This experimental design method is an active area of research together with the output analysis and so no single panacea seems to exist so far. Thus, selection of techniques of experimental design and output analysis more lithely depends upon the objective of simulation analysis, budget constraint and sometimes the analysts subjective judgment. This paper attempts to describe an experimental design methodology for port investment analysis using a case study in a bulk terminal in Korea. Detailed display will be focused on simulation period, warm-up period, the number of replications needed in production runs after brief explanation on the system configuration.

  • PDF