• Title/Summary/Keyword: experimental aerodynamics

Search Result 129, Processing Time 0.027 seconds

A Study on Flow Analysis of Exterior Rear View Mirror of Passenger Car (승용차 후향거울 주위의 3차원 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.35-46
    • /
    • 1997
  • In order to satisfy customer's requirements of ride comfort and high performance, it is necessary for designers to fully understand vehicle aerodynamics and wind noise of newly produced cars because characteristics of flow and wind noise are heavily dependent on each other. In this study numerical and experimental study have been carried out to analyse the effect of flow characteristics at around of rear view mirror on wind noise and soiling on the front S/W. As a result, it's found that the spiral flow mear the front pillar is weakened and spreaded because rear view mirror obstructs the flow. It is also shown that there is abrupt change of gradient of separa- tion line, separation area, intensity of spiral flow and turbulent kinetic energy with varying shape of neck and housing of rear view mirror.

  • PDF

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

An Experimental Study for the Performance Test of a Ballistic Range Simulator (Ballistic Range Simulator의 성능평가를 위한 실험적 연구)

  • Kang, Hyun-Goo;Rajesh, G.;Lee, Jung-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.367-370
    • /
    • 2006
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials, etc, since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The ballistic range consists of a high-pressure tube, piston, pump tube, shock tube and launch tube. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass are varied to obtain various projectile velocities. This study also addresses the effect of the presence of a shock tube located between the pump tube and launch tube on system study. The experimental results are compared with those obtained through an author's theoretical study.

  • PDF

Experimental and numerical aerodynamic investigation of a prototype vehicle

  • Akansu, Selahaddin Orhan;Akansu, Yahya Erkan;Dagdevir, Toygun;Daldaban, Ferhat;Yavas, Feridun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.811-827
    • /
    • 2015
  • This study presents experimental and numerical aerodynamic investigation of a prototype vehicle. Aerodynamics forces examined which exerted on a prototype. This experimental study was implemented in a wind tunnel for the Reynolds number between $10^5-3.1{\times}10^5$. Numerical aerodynamic analysis of the vehicle is conducted for different Reynolds number by using FLUENT CFD software, with the k-$\varepsilon$ realizable turbulence model. The studied model aims at verifying the aerodynamic forces between experimental and numerical results. After the Reynolds number of $2.8{\times}10^5$, the drag coefficient obtained experimentally becomes independent of Reynolds number and has a value of 0.25.

Design and testing of a low subsonic wind tunnel gust generator

  • Lancelot, Paul M.G.J.;Sodja, Jurij;Werter, Noud P.M.;Breuker, Roeland De
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.125-144
    • /
    • 2017
  • This paper summarises the design of a gust generator and the comparison between high fidelity numerical results and experimental results. The gust generator has been designed for a low subsonic wind tunnel in order to perform gust response experiments on wings and assess load alleviation. Special attention has been given to the different design parameters that influence the shape of the gust velocity profile by means of CFD simulations. Design parameters include frequency of actuation, flow speed, maximum deflection, chord length and gust vane spacing. The numerical results are compared to experimental results obtained using a hot-wire anemometer and flow visualisation by means of a tuft and smoke. The first assessment of the performance of the gust generator showed proper operation of the gust generator across the entire range of interest.

Measurement of Aerodynamic Loads on Railway Vehicles Under Crosswind (측풍 시 철도차량에 가해지는 공기역학적 하중의 측정)

  • Kwon, Hyeok-Bin;You, Won-Hee;Cho, Tae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.91-98
    • /
    • 2011
  • In this study, we measure the aerodynamic forces acting on an AREX train in a crosswind by wind tunnel testing. A detailed test model scaled to 5% of the original and including the inter-car, under-body, and the bogie systems was developed. The aerodynamic forces on the train vehicles have been measured in a 4 m $\times$ 3 m test section of the subsonic wind tunnel located in Korea Aerospace Research Institute (KARI). The aerodynamic forces and moments of the train model on two different track models have been plotted for various yaw angles, and the characteristics of the aerodynamic coefficients have been analyzed at the experimental conditions.

An active back-flow flap for a helicopter rotor blade

  • Opitz, Steffen;Kaufmann, Kurt;Gardner, Anthony
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.69-91
    • /
    • 2014
  • Numerical investigations are presented, which show that a back-flow flap can improve the dynamic stall characteristics of oscillating airfoils. The flap was able to weaken the stall vortex and therefore to reduce the peak in the pitching moment. This paper gives a brief insight into the method of function of a back-flow flap. Initial wind tunnel experiments were performed to define the structural requirements for a detailed experimental wind tunnel characterization. A structural integration concept and two different actuation mechanisms of a back-flow flap for a helicopter rotor blade are presented. First a piezoelectric actuation system was investigated, but the analytical model to estimate the performance showed that the displacement generated is too low to enable reliable operation. The seond actuation mechanism is based on magnetic forces to generate an impulse that initiates the opening of the flap. A concept based on two permanent magnets is further detailed and characterized, and this mechanism is shown to generate sufficient impulse for reliable operation in the wind tunnel.

A Computational Study of the Vortical Flows over a Delta Wing At High-Angle of Attack (고영각의 델타익에서 발생하는 와유동에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Kweon Yong-Hun;Kim Heuy-Dong;Shon Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.795-798
    • /
    • 2002
  • This paper dispicts the vortical flow characteristics over a delta wing using a computational analysis for the purpose of investigating and visualizing the effect of the angle of attack and fee stream velocity on the low-speed delta wing aerodynamics. Computations are applied to the full, 3-dimensional, compressible, Navier-Stokes Equations. In computations, the free stream velocity is changed between 20m/s and 60m/s and the angle of attack of the delta wing is changed between $16^{\circ}\;and\;28^{\circ}$. For the correct prediction of the major features associated with the delta wing vortex flows, various turbulence models are tested. The standard $k-{\varepsilon}$ turbulence model predict well the vertical flows over the delta wing. Computational results are compared with the previous experimental ones. It is found that the present CFD results predict the vortical flow characteristics over the delta wing, and with an increase in the free steam velocity, the leading edge vortex moves outboard and its streangth is increased.

  • PDF

Aerodynamics Characteristics of Quad-Rotor Blade (쿼드로터 블레이드의 공력특성)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

A Study on the Effects of Side Jets to the Longitudinal Aerodynamics of Subsonic Missile (측방 제트가 아음속 유도탄 종방향 공력특성에 미치는 영향 연구)

  • GO, Beom Yong;HUR, Ki Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2017
  • Side jet effect on the aerodynamic characteristics of a missile was investigated using experimental and computational methods. A couple of side jets were injected toward outward downstream at mid point of missile body. Cold air jet was used in the wind tunnel test, and cold and hot jet were used in the computation. Wind tunnel test was carried out with jet and without jet, and calculation was performed for three cases ; no jet, cold air jet, and hot mixture gas jet. From the comparison of measured and calculated data for all cases, two points could be deduced. Firstly, side jet made static stability to be unstable by increasing body normal force near the side jet exit and by decreasing tail normal force. Secondly, hot mixture gas had more significant effect on the static stability of a missile-type body than cold air jet.