• Title/Summary/Keyword: expected time to signal

Search Result 262, Processing Time 0.026 seconds

The Interface between Wearable Devices and Metaverse: A Study on Soccer Game Character Ability Mapping using Mi Band (웨어러블 디바이스와 메타버스의 접점: 미밴드를 이용한 축구 게임 캐릭터 능력치 매핑 연구)

  • Hyun-Su Kim;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1345-1352
    • /
    • 2023
  • With the development of virtual reality (VR) and blockchain technology, Metaverse is being used in various fields such as games, education, and social networking. At the same time, shipments of wearable devices such as smartwatches are growing every year, becoming more and more integrated into people's daily lives. This study presents a new possibility of reflecting the user's body signals measured through the combination of the two phenomena in the metaverse character. Various biometric information such as the user's heart rate and amount of exercise collected through the smartwatch are reflected on the character in the metaverse, allowing the user's physical condition to be reflected in the virtual world. Through this, Metaverse is expected to provide a new experience that can be called 'extended reality' beyond simple virtual reality, improve user's satisfaction with Metaverse, and suggest a direction for the development of smartwatches.

Comparative Evaluation of 18F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network (생성적 적대 신경망(Generative Adversarial Network)을 이용하여 획득한 18F-FDG Brain PET/CT 인공지능 영상의 비교평가)

  • Kim, Jong-Wan;Kim, Jung-Yul;Lim, Han-sang;Kim, Jae-sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.15-19
    • /
    • 2020
  • Purpose Generative Adversarial Network(GAN) is one of deep learning technologies. This is a way to create a real fake image after learning the real image. In this study, after acquiring artificial intelligence images through GAN, We were compared and evaluated with real scan time images. We want to see if these technologies are potentially useful. Materials and Methods 30 patients who underwent 18F-FDG Brain PET/CT scanning at Severance Hospital, were acquired in 15-minute List mode and reconstructed into 1,2,3,4,5 and 15minute images, respectively. 25 out of 30 patients were used as learning images for learning of GAN and 5 patients used as verification images for confirming the learning model. The program was implemented using the Python and Tensorflow frameworks. After learning using the Pix2Pix model of GAN technology, this learning model generated artificial intelligence images. The artificial intelligence image generated in this way were evaluated as Mean Square Error(MSE), Peak Signal to Noise Ratio(PSNR), and Structural Similarity Index(SSIM) with real scan time image. Results The trained model was evaluated with the verification image. As a result, The 15-minute image created by the 5-minute image rather than 1-minute after the start of the scan showed a smaller MSE, and the PSNR and SSIM increased. Conclusion Through this study, it was confirmed that AI imaging technology is applicable. In the future, if these artificial intelligence imaging technologies are applied to nuclear medicine imaging, it will be possible to acquire images even with a short scan time, which can be expected to reduce artifacts caused by patient movement and increase the efficiency of the scanning room.

Development of a Daily Pattern Clustering Algorithm using Historical Profiles (과거이력자료를 활용한 요일별 패턴분류 알고리즘 개발)

  • Cho, Jun-Han;Kim, Bo-Sung;Kim, Seong-Ho;Kang, Weon-Eui
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.11-23
    • /
    • 2011
  • The objective of this paper is to develop a daily pattern clustering algorithm using historical traffic data that can reliably detect under various traffic flow conditions in urban streets. The developed algorithm in this paper is categorized into two major parts, that is to say a macroscopic and a microscopic points of view. First of all, a macroscopic analysis process deduces a daily peak/non-peak hour and emphasis analysis time zones based on the speed time-series. A microscopic analysis process clusters a daily pattern compared with a similarity between individuals or between individual and group. The name of the developed algorithm in microscopic analysis process is called "Two-step speed clustering (TSC) algorithm". TSC algorithm improves the accuracy of a daily pattern clustering based on the time-series speed variation data. The experiments of the algorithm have been conducted with point detector data, installed at a Ansan city, and verified through comparison with a clustering techniques using SPSS. Our efforts in this study are expected to contribute to developing pattern-based information processing, operations management of daily recurrent congestion, improvement of daily signal optimization based on TOD plans.

Time Resolution Improvement of MRI Temperature Monitoring Using Keyhole Method (Keyhole 방법을 이용한 MR 온도감시영상의 시간해상도 향상기법)

  • Han, Yong-Hee;Kim, Tae-Hyung;Chun, Song-I;Kim, Dong-Hyeuk;Lee, Kwang-Sig;Eun, Choong-Ki;Jun, Jae-Ryang;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Purpose : This study proposes the keyhole method in order to improve the time resolution of the proton resonance frequency(PRF) MR temperature monitoring technique. The values of Root Mean Square (RMS) error of measured temperature value and Signal-to-Noise Ratio(SNR) obtained from the keyhole and full phase encoded temperature images were compared. Materials and Methods : The PRF method combined with GRE sequence was used to get MR temperature images using a clinical 1.5T MR scanner. It was conducted on the tissue-mimic 2% agarose gel phantom and swine's hock tissue. A MR compatible coaxial slot antenna driven by microwave power generator at 2.45GHz was used to heat the object in the magnetic bore for 5 minutes followed by a sequential acquisition of MR raw data during 10 minutes of cooling period. The acquired raw data were transferred to PC after then the keyhole images were reconstructed by taking the central part of K-space data with 128, 64, 32 and 16 phase encoding lines while the remaining peripheral parts were taken from the 1st reference raw data. The RMS errors were compared with the 256 full encoded self-reference temperature image while the SNR values were compared with the zero filling images. Results : As phase encoding number at the center part on the keyhole temperature images decreased to 128, 64, 32 and 16, the RMS errors of the measured temperature increased to 0.538, 0.712, 0.768 and 0.845$^{\circ}C$, meanwhile SNR values were maintained as the phase encoding number of keyhole part is reduced. Conclusion : This study shows that the keyhole technique is successfully applied to temperature monitoring procedure to increases the temporal resolution by standardizing the matrix size, thus maintained the SNR values. In future, it is expected to implement the MR real time thermal imaging using keyhole method which is able to reduce the scan time with minimal thermal variations.

  • PDF

Four-Dimensional Computed Tomography for Gated Radiotherapy: Retrospective Image Sorting and Evaluation

  • Lim, Sang-Wook;Park, Sung-Ho;Back, Geum-Mun;Ahn, Seung-Do;Shin, Seong-Soo;Lee, Sang-Wook;Kim, Jong-Hoon;Choi, Eun-Kyuong;Kwon, Soo-Il
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.71-74
    • /
    • 2005
  • To introduce the four-dimensional computed tomography (4DCT, Light Speed RT, General Electric, USA) scanner newly installed in our department and evaluate its feasibility for gated radiotherapy. Respiratory signal measured by real-time position management (RPM$^{\circledR}$, Varian Medical, USA) was recorded in synchronization with the 4DCT scanner. 4DCT data were acquired in axial cine mode and sorted retrospective image based on respiratory phase. PTVs delineated from helical CT and 4DCT images were compared. The PTV delineated from conventional helical CT images was 2 cc larger than that from 4DCT images. Dose in PTV of the plan from retrospective CT was 99.3% (minimum=72.0%, maximum=106.5%) and that of helical CT plan was 95.2% (minimum=24.1%, maximum=106.4%) of prescribed dose. Comparing with DVHs of both plan, the coverage for 4CDT plan was 3.7% improved. It is expected that 4DCT could improve tumor control and reduce radiation toxicity for liver cancer.

  • PDF

Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS (러시아의 GLONASS 항법 파라미터 및 성능 분석)

  • Choi, Chang-Mook
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The Russian Global Navigation Satellite System (GLONASS) has been fully recovered since October 2011, and it has been significantly modernized. The recently launched GLONASS 752 was set for successful performance on October 16, 2017 and has resulted in 24-satellite constellation with 22 second-generation (GLONASS-M) satellites, and a third-generation (GLONASS-K) satellite. Therefore, this paper is focused on not only the identified navigation parameters, but also the performance analysis of the project based on its real data received from the studied satellites. It is verified that the 5-11 satellites are available for receiving navigation signal at this time. The obtained values of GDOP, PDOP, HDOP, VDOP, and TDOP are 2.790, 2.424, 1.169, 2.123, and 1.381, noted respectively in standard deviation. In fact, the level of positioning precision is about 1.4m in standard deviation. As a result, the positioning performances of the measured GLONASS and GPS are virtually identical. Therefore, we determine that the GLONASS is expected to be expanded for future applications.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Underwater Channel Environment Analysis Using 10Khz Carrier Frequency at the Shore of West Sea (10kHz 반송파를 사용한 서해안 수중 채널환경 분석)

  • Kim, Min-sang;Ko, Hak-lim;Kim, Kye-won;Lee, Tae-seok;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.132-139
    • /
    • 2016
  • This study was carried out near the waters of Jango port, Dangjin-gun, Chungcheongnam-do by utilizing 10kHz carrier frequency, for the purpose of measurement and analysis of underwater channel environment of the Western sea. For the measurement of horizontal channel environment, the separation distance between transmitter and receiver is made differently in the range between 10m and 4000m. Meanwhile, for the measurement of vertical channel environment, transmission and receiving side ships are fixed as contacted each other and measured differently depending on their depth of submergence. In this study, the Coherence Bandwidth and the Coherence Time were estimated by analyzing the Power delay profile of the real sea based on the measured data, and analyzing the doppler frequency through frequency conversion of received tone-signal, respectively. This study is expected to become a base study in carrying out the frame design for underwater communication to improve the communication and secure the reliability of communication in future underwater channel environment.

A STUDY ON THE JUJEON OF AUTOMATIC CLEPSYDRA IN EARLY JOSEON DYNASTY (조선 전기 자동물시계의 주전(籌箭) 연구)

  • YUN, YONG-HYUN;KIM, SANG HYUK;MIHN, BYEONG-HEE;OH, KYONG TAEK
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.65-78
    • /
    • 2021
  • Jagyeokru, an automatic striking water clock described in the Sejong Sillok (Veritable Records of King Sejong) is essentially composed of a water quantity control device and a time-signal device, with the former controlling the amount or the flow rate of water and the latter automatically informing the time based on the former. What connects these two parts is a signal generating device or a power transmission device called the 'Jujeon' system, which includes a copper rod on the float and ball-racked scheduled plates. The copper products excavated under Gongpyeong-dong in Seoul include a lot of broken plate pieces and cylinder-like devices. If some plate pieces are put together, a large square plate with circular holes located in a zigzag can be completed, and at the upper right of it is carved 'the first scheduled plate (一箭).' Cylinder-like devices generally 3.8 cm in diameter are able to release a ball, and have a ginkgo leaf-like screen fixed on the inner axis and a bird-shaped hook of which the leg fixes another axis and the beak attaches to the leaf side. The lateral view of this cylinder-like device appears like a trapezoid and mounts an iron ball. The function of releasing a ball agrees with the description of Borugak Pavilion, where Jagyeokru was installed, written by Kim Don (1385 ~ 1440). The other accounts of Borugak Pavilion's and Heumgyeonggak Pavilion's water clocks describe these copper plates and ball releasing devices as the 'Jujeon' system. According to the description of Borugak Pavilion, a square wooden column has copper plates on the left and right sides the same height as the column, and the left copper plate has 12 drilled holes to keep the time of a 12 double-hours. Meanwhile, the right plate has 25 holes which represent seasonal night 5-hours (Kyeong) and their 5-subhours (Jeom), not 12 hours. There are 11 scheduled plates for seasonal night 5-hours made with copper, which are made to be attached or detached as the season. In accordance with Nujutongui (manual for the operation of the yardstick for the clepsydra), the first scheduled plate for the night is used from the winter solstice (冬至) to 2 days after Daehan (大寒), and from 4 days before Soseol (小雪) to a day before the winter solstice. Besides the first scheduled plate, we confirm discovering a third scheduled plate and a sixth scheduled plate among the excavated copper materials based on the spacing between holes. On the other hand, the width of the scheduled plate is different for these artifacts, measured as 144 mm compared to the description of the Borugak Pavilion, which is recorded as 51 mm. From this perspective, they may be the scheduled plates for the Heumgyeonggak Ongru made in 1438 (or 1554) or for the new Fortress Pavilion installed in Changdeokgung palace completed in 1536 (the 31st year of the reign of King Jungjong) in the early Joseon dynasty. This study presents the concept of the scheduled plates described in the literature, including their new operating mechanism. In addition, a detailed model of 11 scheduled plates is designed from the records and on the excavated relics. It is expected that this study will aid in efforts to restore and reconstruct the automatic water clocks of the early Joseon dynasty.

A Study on Performance Characteristics of Multi-level PDP Driver Circuit in Accordance of Signal Timing Variation (Multi-Level을 사용한 PDP 구동회로에서 Timing 변화에 따른 특성 변화에 관한 연구)

  • Kim Jung-Soo;Roh Chung-Wook;Hong Sung-Soo;Sakong Sug-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.560-568
    • /
    • 2005
  • The proposed Multi-level PDP sustain Driver is composed of the semiconductor devices with low voltage rating compared to those used in the prior circuit proposed by L. Wether, and it has two resonant periods during the charging (rising period) and discharging (falling period) the PDP in the sustaining voltage waveforms. In accordance with the change of timing phase$(T_{r1},\;T_{i1},\;T_{r2})$, the performance characteristics of a commercial PDP module has been carried out and compared the characteristic with the 42V6, made of LG Electronics co., Experimental results show that the performance characteristics of PDP module are greatly influenced by the variation of $T_{i1}\;and\;T_{r2}$. The variation of $T_{r1}$ do not influence much on the performances of PDP. With the conditions that $T_{r1}=60ns,\;T_{i1}=120ns,\;and\;T_{r2}=350ns$, we could get the performances listed as the luminance is increased $14.6\%$, the power consumptions is decreased $5.9\%$, the panel efficiency is increased $24.2\%$, module efficiency is increased $21.2\%$, compared to those shown in the commercial PDP module (42V6). Therefore, the proposed multi-level PDP sustain driver expected to be suitable to actual PDP module application.