• Title/Summary/Keyword: expected delay

Search Result 453, Processing Time 0.028 seconds

Downtime Optimization for Fishing Vessel Equipment Using Delay Time Analysis

  • Jung, Gi-Mun;Kwon, Young-Sub;Anand Pillay;Jin Wang
    • International Journal of Reliability and Applications
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2001
  • Delay time analysis is a pragmatic mathematical concept readily embraced by engineers which has been developed as a means to model maintenance decision problem. This paper considers an inspection period using delay time analysis for fishing vessel equipment. We assume that delay time has a Weibull distribution. In this paper, we determine the optimal inspection period which minimize the expected downtime per unit time. Explicit solutions for the optimal inspection are presented for illustrative purposes.

  • PDF

Risk Evaluation Based on the Hierarchical Time Delay Model in FMEA (FMEA에서 계층적 시간 지연 모형에 근거한 위험평가)

  • Jang, Hyeon Ae;Lee, Min Koo;Hong, Sung Hoon;Kwon, Hyuck Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.2
    • /
    • pp.373-388
    • /
    • 2016
  • Purpose: This paper suggests a hierarchical time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). In place of the conventional RPN(risk priority number), a more reasonable and objective risk metric is proposed under hierarchical failure cause structure considering time delay between a failure mode and its causes. Methods: The structure of failure modes and their corresponding causes are analyzed together with the time gaps between occurrences of causes and failures. Assuming the severity of a failure depends on the length of the delayed time for corrective action, a severity model is developed. Using the expected severity, a risk priority metric is defined. Results: For linear and quadratic types of severity, nice forms of expected severity are derived and a meaningful metric for risk evaluation is defined. Conclusion: The suggested REM(risk evaluation metric) provides a more reasonable and objective risk measure than the conventional RPN for FMEA.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Development of communication delay model for Profibus token pssing Protocol (Profibus token pass ing protocol의 통신지연 모델 개발)

  • Kim, H. H.;Lee, K. C.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.470-473
    • /
    • 2002
  • Most networks for automation are tuned to an expected traffic at their design stage. During their actual operations, however, the networks experience considerable changes in traffic from time to time. These traffic changes caused by common events like machine failure and production schedule change may adversely affect the network performance and, in turn, the performance of the connected devices. This paper presents communication delay model for Profibus token passing protocol, and introduces TTR selection methods to maintain a uniform level of network performance at all stations under changing network traffic.

  • PDF

Delay Factor Analysis and Process Enhancement System Development Focusing on Masonry Work (조적공사에서의 작업 지연 요소 도출 및 개선 시스템 제안)

  • Park, Min Ha;Lee, Hye Lin;Ko, Yong-Ho;Han, SeungWoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.119-120
    • /
    • 2015
  • Appropriate management of the finish works in construction project is one of most important activities that must be conducted considering the total duration of the project. Masonry work is a fundamental process that is performed in the preliminary steps of finish works. However, it has been investigated that the analysis of delay factors affecting masonry work has been neglected in the domestic construction site. Therefore, this study deducts delay factors affecting masonry work by literature review and survey on site engineers and labors. This study has been conducted as a preliminary step of developing a construction project interference management system which is expected to suggest objective information for the decision making in construction sites.

  • PDF

Analytic Model for Performance Evaluation of B-MAC Protocol under Contention Transmission Condition of Two Senders (두 개의 송신 노드가 경쟁하는 상황의 B-MAC 무선 센서 네트워크 프로토콜 성능 분석을 위한 분석적 모델)

  • Jung, Sung-Hwan;Kwon, Tae-Kyoung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.137-153
    • /
    • 2009
  • In this paper, we present an analytic model that evaluates the performance of B-MAC protocol under contention transmission conditions of two senders in a single-hop wireless sensor network. Our model considers the impact of several important factors such as sleep cycle, the backoff mechanism and incoming traffic loads. After obtaining the service delay distribution of a sending node and expected delay of a receiving node, an iterative algorithm is presented for calculating the performance measures such as expected energy consumption usage per packet and latency. Simulation results show that the proposed analytic model can accurately estimate the performance measures under different traffic conditions.

A delay analysis of multi-access protocol under wireless network (무선환경하에서 Slotted ALOHA 방식의 다중채널 경쟁에 대한 지연시간분석)

  • Hur Sun;Kim Jeong-Kee;Nam Jin-Gyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.129-133
    • /
    • 2005
  • Slotted ALOHA(S-ALOHA) is widely used in local wireless network. We analyze the performance of contention-based model in wireless LAN using S-ALOHA protocol. We analyze the performance of binary exponential backoff (BEB) algorithm under the slotted ALOHA protocol: whenever a node's message which tries to reserve a channel is involved in a collision for the ith time, it chooses one of the next $2^i$ frames with equal probability and attempts the reservation again. We derive the expected access delay and throughput which is defined as the expected number of messages that reserve a channel in a frame. A simulation study is performed to verify our method.

Investigating Main Causes for Schedule Delay in Construction Projects in Bangladesh

  • Rahman, MD. Mizanur;Lee, Young Dai;Ha, Duy Khanh
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.3
    • /
    • pp.33-46
    • /
    • 2014
  • Delay is the most common problem in the construction industry. It has many negative effects on project's success in terms of time, cost, quality, and safety. From the literature review, a total of thirty-five factors of delay were selected. These factors were divided into seven groups related to materials, manpower, owner, consultant, contractor, construction, and external problems. This study was carried out to identify the main causes of delay for a construction project through their importance level. The importance level was determined based on the frequency of occurrence and severity of impact. The structured questionnaire has distributed to the respondents who have much experience in construction management in Bangladesh. The results of analysis indicated that top five factors of construction delay according to their level of importance are: (1) price of construction materials increased very rapidly, (2) political situation (revolution/ public strikes), (3) shortages of skilled workers, (4) poor site management and supervision by contractor, (5) incompetent/ immature subcontractors. These findings of this study are expected to be significant contributions to Bangladesh construction industry in controlling current performance of project on time overrun.

Development of a variable resistance-capacitance model with time delay for urea-SCR system

  • Feng, Tan;Lu, Lin
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Experimental research shows that the nitric oxides ($NO_X$) concentration track at the outlet of selective catalytic reduction (SCR) catalyst with a transient variation of Adblue dosage has a time delay and it features a characteristic of resistance-capacitance (RC). The phenomenon brings obstacles to get the simultaneously $NO_X$ expected to be reduced and equi-molar ammonia available to SCR reaction, which finally inhibits $NO_X$ conversion efficiency. Generally, engine loads change frequently, which triggers a rapid changing of Adblue dosage, and it aggravates the air quality that are caused by $NO_X$ emission and ammonia slip. In order to increase the conversion efficiency of $NO_X$ and avoid secondary pollution, the paper gives a comprehensive analysis of the SCR system and tells readers the key factors that affect time delay and RC characteristics. Accordingly, a map of time delay is established and a solution method for time constant and proportional constant is carried out. Finally, the paper accurately describes the input-output state relation of SCR system by using "variable RC model with time delay". The model can be used for a real-time correction of Adblue dosage, which can increase the conversion efficiency of $NO_X$ in SCR system and avoid secondary pollution forming. Obviously, the results of the work discover an avenue for the SCR control strategy.

Characteristics of Chemical Reaction and Ignition Delay in Hydrogen/Air/Diluent Mixtures (수소/공기/희석제 혼합기의 점화지연과 화학반응 특성연구)

  • Lee, Dong Youl;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • Hydrogen is considered a cleaner energy source than fossil fuels. As a result, the use of hydrogen in daily life and economic industries is expected to increase. However, the use of hydrogen energy is currently limited because of safety issues. The rate of combustion of the hydrogen mixture is about seven times higher than that of hydrocarbon fuels. The hydrogen mixture is highly flammable and has a low minimum ignition energy. Therefore, it presents considerable risks for fire and explosions in all areas of hydrogen manufacturing, transportation, storage, and use. In this study, the auto-ignition characteristics of hydrogen were investigated numerically for diluted hydrogen mixtures. Auto-ignition temperature, a critical property predicting the fire and explosion risk in hydrogen combustion, was determined in well-stirred reactors. When N2 and CO2 were used to dilute the hydrogen/air mixture, the ignition delay time increased with increasing dilution ratios in both cases. The CO2-diluted mixtures exhibited a longer ignition delay than the N2-diluted mixtures. We also confirmed that lower initial ignition temperatures increased the ignition delay times at 950 K and above. Overall, the auto-ignition characteristics, such as the concentrations of participating species and ignition delay times, were primarily affected by the initial temperature of the mixture.