• Title/Summary/Keyword: expansive homeomorphism

Search Result 15, Processing Time 0.025 seconds

SYMBOLICALLY EXPANSIVE DYNAMICAL SYSTEMS

  • Oh, Jumi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.85-90
    • /
    • 2022
  • In this article, we consider the notion of expansiveness on compact metric spaces for symbolically point of view. And we show that a homeomorphism is symbolically countably expansive if and only if it is symbolically measure expansive. Moreover, we prove that a homeomorphism is symbolically N-expansive if and only if it is symbolically measure N-expanding.

THE PSEUDO ORBIT TRACING PROPERTY AND EXPANSIVENESS ON UNIFORM SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.255-267
    • /
    • 2022
  • Uniform space is a generalization of metric space. The main purpose of this paper is to extend several results contained in [5, 6] which have for an expansive homeomorphism with the pseudo orbit tracing property(POTP in short) on a compact metric space (X, d) for an expansive homeomorphism with the POTP on a compact uniform space (X, 𝒰). we characterize stable and unstable sets, sink and source and saddle, recurrent points for an expansive homeomorphism which has the POTP on a compact uniform space (X, 𝒰).

ON THE COUNTABLE COMPACTA AND EXPANSIVE HOMEOMORPHISMS

  • Kim, In-Su;Kato, Hisao;Park, Jong-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.403-409
    • /
    • 1999
  • In this paper we introduce the notions of expansive homeomorphism and its properties, and study the relation between countable compacta and ordinal numbers. Our results extend and improve those of T.Kimura and others.

  • PDF

ON STABILITY OF EXPANSIVE INDUCED HOMEOMORPHISMS ON HYPERSPACES

  • Koo, Namjip;Lee, Hyunhee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper we investigate the topological stability of induced homeomorphisms on a hyperspace. More precisely, we show that an expansive induced homeomorphism on a hyperspace is topologically stable. We also give examples and a diagram about implications to illustrate our results.

ENTROPY MAPS FOR MEASURE EXPANSIVE HOMEOMORPHISM

  • JEONG, JAEHYUN;JUNG, WOOCHUL
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.377-384
    • /
    • 2015
  • It is well known that the entropy map is upper semi-continuous for expansive homeomorphisms on a compact metric space. Recently, Morales [3] introduced the notion of measure expansiveness which is general than that of expansiveness. In this paper, we prove that the entropy map is upper semi-continuous for measure expansive homeomorphisms.

PERIODIC SHADOWABLE POINTS

  • Namjip Koo;Hyunhee Lee;Nyamdavaa Tsegmid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.195-205
    • /
    • 2024
  • In this paper, we consider the set of periodic shadowable points for homeomorphisms of a compact metric space, and we prove that this set satisfies some properties such as invariance and being a Gδ set. Then we investigate implication relations related to sets consisting of shadowable points, periodic shadowable points and uniformly expansive points, respectively. Assume that the set of periodic points and the set of periodic shadowable points of a homeomorphism on a compact metric space are dense in X. Then we show that a homeomorphism has the periodic shadowing property if and only if so is the restricted map to the set of periodic shadowable points. We also give some examples related to our results.

PRESERVATION OF EXPANSIVITY IN HYPERSPACE DYNAMICAL SYSTEMS

  • Koo, Namjip;Lee, Hyunhee
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1421-1431
    • /
    • 2021
  • In this paper we study the preservation of various notions of expansivity in discrete dynamical systems and the induced map for n-fold symmetric products and hyperspaces. Then we give a characterization of a compact metric space admitting hyper N-expansive homeomorphisms via the topological dimension. More precisely, we show that C0-generically, any homeomorphism on a compact manifold is not hyper N-expansive for any N ∈ ℕ. Also we give some examples to illustrate our results.

EXPANSIVE HOMEOMORPHISMS WITH THE SHADOWING PROPERTY ON ZERO DIMENSIONAL SPACES

  • Park, Jong-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.759-764
    • /
    • 2004
  • Let X = {a} ${\cup}$ {$a_{i}$ ${$\mid$}$i $\in$ N} be a subspace of Euclidean space $E^2$ such that $lim_{{i}{\longrightarrow}{$\infty}}a_{i}$ = a and $a_{i}\;{\neq}\;a_{j}$ for $i{\neq}j$. Then it is well known that the space X has no expansive homeomorphisms with the shadowing property. In this paper we show that the set of all expansive homeomorphisms with the shadowing property on the space Y is dense in the space H(Y) of all homeomorphisms on Y, where Y = {a, b} ${\cup}$ {$a_{i}{$\mid$}i{\in}Z$} is a subspace of $E^2$ such that $lim_{i}$-$\infty$ $a_{i}$ = b and $lim_{{i}{\longrightarrow}{$\infty}}a_{i}$ = a with the following properties; $a_{i}{\neq}a_{j}$ for $i{\neq}j$ and $a{\neq}b$.