• 제목/요약/키워드: expansion coefficient

검색결과 1,202건 처리시간 0.026초

치과용 지르코니아 도재의 Li2O 첨가에 따른 열팽창계수 변화 (A Change of Thermal Expansion Coefficient according to Li2O-added Porcelain for Dental Zirconia)

  • 한석윤
    • 대한치과기공학회지
    • /
    • 제31권4호
    • /
    • pp.25-30
    • /
    • 2009
  • Zirconia($ZrO_2$) has attracted much attention in science and technology because of its high refractive index, high melting temperature, hardness, low thermal conductivity and corrosion barrier properties. And it is widely used as the dental restoration material because of its esthetic appearance. In this research, we analyzed the particle size and composition of the imported dental porcelain for zirconia. And the glass frit was produced. To decrease the glass transition temperature and softening temperature of the glass frit, $Li_2O$ was added into it and the effect of $Li_2O$ on the firing temperature was researched. Then the glass which contains leucite crystal with a high coefficient of thermal expansion(CTE) was manufactured and it was mixed with the glass frit to control the CTE. The phase composition were analyzed using the X-ray diffraction. The morphologies of the samples were observed by the scanning electron microscope. The 4wt% $Li_2O$-added glass frit has the optimal glass transition temperature and softening temperature. And 6 wt% leucite crystal was mixed with the glass frit to control the CTE. From the experimental results of crystallization, the crystal phase was found only leucite crystal.

  • PDF

고유변형도를 경계조건으로 갖는 대형 각(殼) 구조물 열변형 해석법 개발 (Development of Thermal Distortion Analysis Method on Large Shell Structure Using Inherent Strain as Boundary Condition)

  • 하윤석
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.93-100
    • /
    • 2008
  • There are two ways of conventional thermal distortion analysis. One is the thermal elasto-plastic analysis and the other is the equivalent forces method based on inherent strain. The former needs exorbitant analysis time, while the latter cannot obtain results of stress field and it needs much time consumption with loads modeling on curved plates. Such faults in two methods have made difficulties in thermal distortion analysis of a large structure like ship hull. In order to solve them, new kind of thermal distortion analysis method was developed. We devised that the inherent strains was used as direct input factors in forms of boundary conditions. It was embodied by using thermal expansion coefficient in commercial code. We used the pre-calculated inherent strain as thermal expansion coefficient, and endowed nodes with imaginary temperatures. This method was already adopted at hull block welding distortion analysis which was considered as impossible, and gave productive results such as reduction of work time in the dry dock.

주조용 알루미늄합금의 $Al_{2}O_{3}-40%TiO_{2}$ 용사층에 대한 마멸특성 평가 (Evaluation of wear chracteristics for $Al_{2}O_{3}-40%TiO_{2}$ sprayed on casting aluminum alloy)

  • 채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.183-190
    • /
    • 1997
  • The wear behaviors of $Al_2O_3-40%TiO_2$ deposited on casting aluminum alloy(ASTM A356) by plasma spray against SiC ball have been investigated experimentally. Friction and wear tests are carried out at room temperature. The friction coefficient of $Al_2O_3-40%TiO_2$ coating is lower than that of pure $Al_2O_3$ coating(APS). It is found that low friction correspond to low wear and high friction to high wear in the experimental result. The thickness of $Al_2O_3-40%TiO_2$ coatings indicated the existence of the optimal coating thickness. It is found that a voids and porosities of coating surface result in the crack generated. As the tensile stresses in coating increased with the increased friction coefficient. The columnar grain of coating will be fractured to achieve the critical stress. It is found that the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tensile and compressire under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. This crack propagation above interface is observed in SEM.

  • PDF

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성 (Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process)

  • 안인섭;박동규;안광복;신승목
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동 (Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments)

  • 김희산
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

냉동기 팽창장치로서 인젝터 사용의 적합성에 관한 연구 (Study on the Adaptiveness of Using an Injector As an Expansion Device of Refrigerator)

  • 조병옥
    • 한국분무공학회지
    • /
    • 제5권3호
    • /
    • pp.1-8
    • /
    • 2000
  • Spray as a liquid atomization technique has wide applications of combustion, painting, chemical, medical and agricultural purpose, and so on. Capillary tubes and expansion valves, as an expansion device of vapor compression type refrigerators, has been used from the early time. But there are some problems in practice, the former can't control refrigerant flowrate exactly and the later most of imported are expensive relatively and has some difficulties to install. Choosing an injector as a new concept of expansion device of refrigerator in this study to improve such troubles of the coming expansion device, the refrigerant spray behavior and refrigeration characteristics are evaluated experimentally. It is verified that the injector with a good function of refrigerant atomization plays a desirable role of refrigerant expansion in the actual refrigeration cycle.

  • PDF

전산유체역학을 활용한 원전용 밸브의 유량계수 산출에 대한 연구 (STUDY ON CALCULATION OF FLOW COEFFICIENT BY CFD FOR VALVE IN NUCLEAR POWER PLANT)

  • 김재형;이정희
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.54-60
    • /
    • 2016
  • The valve used in nuclear power plant must be qualified but the limitation of the test facility leads to use the numerical analysis. The flow coefficient is calculated with the consideration of the pressure, velocity and geometry. And the flow coefficient is the important physical property which is prepared using experiment or analysis by valve manufacturer. In this study, the analysis model was made according to ISA 75.02.01 and the mass flow rate and pressure drop ratio was calculated. The model of the expansion factor was applied to the simulation result and the pressure drop ratio at the start of the choked flow in the valve was found. With the simulation result, the consideration was performed that the expansion factor is the important physical property to the system engineer in addition to the flow coefficient.

Wave-blocking Efficiency of a Horizontal Porous Flexible Membrane

  • Cho, Il-Hyoung
    • 한국해양공학회지
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2003
  • 본 논문에서는 투과성 유연막이 수면밑 일정한 깊이에 수평으로 잠겨있을 때 투과성 유연막에 의한 파랑제어성능을 살펴보았다. 해석 방법으로는 유체문제는 고유함수전개법 (Eigenfunction expansion method)을 사용하였고, 유연막과 파랑의 상호작용문제는 Newmann 이 제시한 유탄성 이론 (hydro-elastic theory)을 채택하였다. 막의 투과성 효과를 고려하기 위하여 수평막에서의 수직속도는 수평막 상하의 압력차에 선형적으로 비례하며 그들 사이에는 위상차가 없다고 가정한 Darcy 법칙을 사용하였다. 투과성 수평막의 설계변수 (초기장력, 길이, 잠긴 깊이, 공극율)와 입사파의 주파수를 바꿔가면서 반사율과 투과율 그리고 에너지 손실율을 살펴보았다.