• 제목/요약/키워드: expansion chamber

검색결과 207건 처리시간 0.029초

급확대관내에서 류유선회유동의 열전달에 관한 연구 (An Experimental Study of the Turbulent Swirling Flow and Heat Transfer Downstream of an Abrupt Expansion in a Circulat Pipe with Uniform Heat Flux)

  • 권기린;허종철
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.138-152
    • /
    • 1996
  • Many studies of heat transfer on the swirling flow or unswirled flow in a abrupt pipe expansion are widely carried out. The mechanism is not fully found evidently due to the instabilities of flow in a sudden change of the shape and appearance of turbulent shear layers in a recirculation region and secondary vortex near the corner. The purpose of this study is to obtain data through an experimental study of the swirling flow and heat transfer downstream of an abrupt expansion in a circular pipe with uniform heat flux. Experiments were carried out for the turbulent flow nd heat transfer downstream of an abrupt circular pipe expansion. The uniform heat flux condition was imposed to the downstream of the abrupt expansion by using an electrically heated pipe. Experimental data are presented for local heat transfer rates and local axial velocities in the tube downstream of an abrupt 3:1 & 2:1 expansion. Air was used as the working fluid in the upstream tube, the Reynolds number was varied from 60, 00 to 120, 000 and the swirl number range (based on the swirl chamber geometry, i.e. L/d ratio) in which the experiments were conducted were L/d=0, 8 and 16. Axial velocity increased rapidly at r/R=0.35 in the abrupt concentric expansion turbulent flow through the test tube in unswirled flow. It showed that with increasing axial distance the highest axial velocities move toward the tube wall in the case of the swirling flow abrupt expansion. A uniform wall heat flux boundary condition was employed, which resulted in wall-to-bulk temperatures ranging from 24.deg. C to 71.deg. C. In swirling flow, the wall temperature showed a greater increase at L/d=16 than any other L/d. The bulk temperature showed a minimum value at the pipe inlet, it also exhibited a linear increase with axial distance along the pipe. As swirl intensity increased, the location of peak Nu numbers was observed to shift from 4 to 1 step heights downstream of the expansion. This upstream movement of the maximum Nusselt number was accompanied by an increase in its magnitude from 2.2 to 8.8 times larger than fully developed tube flow values.

  • PDF

불꽃점화 반켈 로터리 기관의 성능 시뮬레이션 (A Performance Simulation for Spark Ignition Wankel Rotary Engine)

  • 채재우;이상만;전영남;김규정;정영식
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.80-89
    • /
    • 1993
  • Performance simulation for a Spark Ignition Wankel rotary Engine is presented in this paper. The volume of chamber at each eccentric shaft angle is evaluated by using geometric models of housing and rotor. A thermodynamic model which includes the first law of thermodynamics, combustion and convective heat transfer from chamber contents to surroundings is imployed. A thermochemical equilibrium model which considers 10 species(CO, $CO_2$, $O_2$, $H_2$, $H_2O$, OH, O, NO, $N_2$) in the burned gas region, is also employed. Four processes of gas exchange, compression, combustion and expansion are considered and the pressure, temperature and composition of chamber gas at each eccentric shaft angle in each process are computed in this performance simulation. This performance simulation must be useful for optimal design of Spark Ignition Wankel Rotray Engine with parametric study for various design parameters and operating conditions.

  • PDF

핀틀 로켓의 초기 최적 노즐 팽창비 결정 방법 연구 (The stydy on determination method of initial optimal nozzle expansion ratio in pintle solid rocket motor)

  • 김중근;이영원
    • 한국항공우주학회지
    • /
    • 제39권8호
    • /
    • pp.744-749
    • /
    • 2011
  • 본 논문에서는 핀틀 로켓의 초기 최적 노즐 팽창비를 결정하는 방법에 대해서 제시하였다. 초기 최적 노즐 팽창비는 최대/최소 압력의 추력 계수로부터 계산되는 질량 가중 추력 계수를 최대화시켜 결정하였으며 이는 주어진 임무를 수행함에 있어 소요되는 추진제무게가 최소화되는 조건과 일치한다. 초기 최적 노즐 팽창비 결정에 영향을 주는 인자는 최대 압력, 추력조절비 그리고 총추력비이며 이중에서 총추력비가 가장 큰 영향을 준다.

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.

복합소호형 가스 차단기의 SLF 차단 성능 해석 (Analysis of SLF Interruption Performance in self-blast Gas Circuit Breaker)

  • 박진근;안희섭;최종웅;김영근;조해용
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.24-32
    • /
    • 2020
  • A self-blast type gas circuit breaker has been studied in this study to improve efficiency of interrupting performance of short line fault(SLF). Hot gas flows of gas circuit breaker have been simulated to evaluate interruption performance using CFD. Design parameters such as various types of expansion chamber and nozzles are suggested by using simulation results. Simulated results and experimental ones are compared with previous (ones that of in under development and with capacitor) GCB. Modified new shape of an expansion chamber and nozzle has been suggested to improve the efficiency of gas flow and to provide guidelines for designing self-blast breaker with a higher interruption capability.

직립벽 앞에 놓인 일정깊이 잠긴 슬릿판에 의한 반사율 해석 (On an Analysis of Reflection Coefficients by a Partially Immersed Slotted Plate with a Back Wall)

  • 조일형
    • 한국해안해양공학회지
    • /
    • 제15권3호
    • /
    • pp.143-150
    • /
    • 2003
  • 고유함수전개법을 사용하여 수직벽 앞에 일정깊이 잠긴 슬릿판과 규칙파의 상호작용문제를 살펴보았다. 슬릿판에 의한 반사율에 영향을 미치는 주요 설계변수들은 공극율, 잠긴깊이, 챔버길이, 입사각도, 입사파의 주파수임을 확인하였다 슬릿판의 공극율이 0.1일 때 반사율이 전주파수에 걸쳐서 최소가 됨을 밝혔다. 반사율에 대한 해석결과와 Zhu(2001) 모형실험결과를 챔버길이와 잠긴깊이 그리고 입사파의 주기를 변화시키면서 비교한 결과, 두 결과는 서로 잘 일치하였다. 본 해석방법은 슬릿판 후면에서 발생한 박리에 의한 에너지 손실을 정확히 고려할 수 있으므로 슬릿 케이슨 방파제 제작에 필요한 설계정보를 제공할 것이다.

직렬-복합소호형 모델 가스차단기의 차단성능평가 (Estimation of Interruption Capability of a Serial-Hybrid Type Model Gas Circuit Breaker)

  • 송기동;정진교;박경엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.538-544
    • /
    • 2004
  • This paper presents the interruption capability of serial-hybrid type GCB (gas circuit breaker) compared with that of puffer type. First a puffer type model interrupter which has the stroke length of 80 mm has been designed and manufactured. And also, a serial-hybrid type interrupter which has the same design parameters as the puffer type interrupter except the serially arranged thermal-expansion chamber and puffer cylinder has been fabricated. Using a simplified synthetic test facility, the critical interruption capabilities of the two GCBs have been estimated. The critical di/dt, the critical dV/dt of ITRV (initial transient recovery voltage) and the minimum arcing time of the puffer type model GCB were 10.7 A/${\mu}\textrm{s}$, 5.5 kV/${\mu}\textrm{s}$, and 15.0 ms respectively. In the case of serial-hybrid type model GCB, each of the values was 16.6A/${\mu}\textrm{s}$, 11.5 kV/${\mu}\textrm{s}$ and 13.0 ms. As a conclusion of this work, it has been quantitatively confirmed that the hybrid type interrupter can obtain the sufficient interruption capability at the operating force which is so low that puffer type interrupter has not the interruption capability.