• 제목/요약/키워드: exonuclease activity

검색결과 26건 처리시간 0.019초

Cloning, Expression, and Characterization of Thermostable DNA Polymerase from Thermoanaerobacter yonseiensis

  • Kim, Dae-Jin;Jang, Hyeung-Jin;Pyun, Yu-Ryang;Kim, Yu-Sam
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.320-329
    • /
    • 2002
  • A gene, coined tay, for a thermostable DNA polymerase from the novel, extremely thermophilic bacterium Thermoanaerobacter yonseiensis was cloned and expressed in E. coli. Using a DNA polymerase homologous PCR product as a hybridization probe, tay was isolated and sequenced to consist of 2621 nucleotides that encode 872 amino acids. A database analysis showed that DNA polymerase, coined Tay, from T. yonseiensis shared a 39% to 47% identity in the amino acid sequence with those from other DNA polymerases. Tay was overexpressed in E. coli as a fusion protein with a poly-histidine tag at the C-terminus. It was purified by heat treatment, followed by a $Ni^{2+}$-chelate column. The molecular weight of purified Tay was approximately 97 kDa, as shown by SDS PAGE, and it showed high DNA polymerase activity and thermostability. However, it had no 3'$\rightarrow$5' exonuclease activity.

Increased DNA Polymerase Fidelity of the Lamivudine Resistant Variants of Human Hepatitis B Virus DNA Polymerase

  • Hong, Young-Bin;Choi, Yong-Wook;Jung, Gu-Hung
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.167-176
    • /
    • 2004
  • Although efficient antiviral lamivudine is used for HBV-infected patients, a prolonged treatment with nucleoside analogs often results in lamivudine-resistant variants. In this study, we evaluated the fidelity of the lamivudine-resistant variants. The FLAG-tagged wild-type (FPolE) and Met550 variants (FPolE/M550A, M550V, and M550I) of HBV DNA polymerases were expressed in insect cells then purified. Like many other reverse transcriptases, no $3'{\rightarrow}5'$ exonuclease activity was detected in the HBV DNA polymerase. Since there is no proofreading activity, then the use of the site-specific nucleotide misincorporation method is beneficial. From the $f_{ins}$ value analysis, it is evident that M550I and M550V exhibit higher fidelity values than the wild-type HBV DNA polymerase, while M550A exhibits similar fidelity values. It is therefore suggested that lamivudine resistance comes from the stringency to dNTP binding and the discrimination of dCTP and lamivudine in M550V and M550I.

Transcriptional Analysis of the DNA Polymerase Gene of Bombyx mori Parvo-like Virus (China Isolate)

  • Wang, Yong-Jie;Chen, Ke-Ping;Yao, Qin;Han, Xu
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.139-145
    • /
    • 2007
  • The Bombyx mori parvo-like virus (China isolate) DNA polymerase (BmDNV-3 dnapol) gene has been tentatively identified based on the presence of conserved motifs. In the present study, we perform a transcriptional analysis of the BmDNV-3 dnapol gene using the total RNA isolated from BmDNV-3 infected silkworm at different times. Northern blot analysis with a BmDNV-3 dnapol-specific riboprobe showed a major transcript of 3.3 kb. 5'-RACE revealed that the major transcription start point was located 20 nucleotides downstream of the TATA box. In a temporal expression analysis using differential RT-PCR, BmDNV-3 dnapol transcript was detected at low levels at 6 h.p.i., increased from 6 to 36 h.p.i., and remained fairly constant thereafter. Analysis of the predicted DNA polymerase sequence using neighborjoining and protein parsimony algorithms indicated that the predicted 1115-residue polypeptide contained five motifs associated with DNA polymerases synthetic activities and three additional motifs associated with polymerases possessing 3' to 5' exonuclease activity. The molecular phylogenetic analysis of this gene supported the placement of Bombyx mori parvo-like virus in a separate virus family.

PCR 기반의 무세포 단백질 발현 시스템을 이용한 절단 트랜스아미나제의 고속생산 (Rapid Preparation of Truncated Transaminases using a PCR-based Cell-free Protein Synthesis System)

  • 권용찬;박경문;김동명
    • KSBB Journal
    • /
    • 제21권4호
    • /
    • pp.302-305
    • /
    • 2006
  • PCR증폭기술 및 무세포 단백질 발현 기술의 융합을 통하여, 여러 형태로 서열의 일부가 결손된 단백질들을 고속으로 발현할 수 있는 시스템을 구축하였다. Exonuclease 및 endonuclease에 대한 mRNA의 안정성 향상을 통하여, PCR 증폭을 통해 획득한 선형 DNA로부터의 안정적인 단백질 발현이 가능하였다. 동일한 플라스미드로부터 출발하여 수 시간 이내에 C-말단의 아미노산서열이 순차적으로 제거된 다양한 형태의 트랜스아미나제 Vf의 활성변화를 확인할 수 있었으며 이같은 기술은 각종 효소 단백질의 서열-활성 상호관계의 연구를 위한 유용한 기반을 제공할 것으로 기대된다.

Simultaneous Quantification of Cyanobacteria and Microcystis spp. Using Real-Time PCR

  • Oh, Kyoung-Hee;Jeong, Dong-Hwan;Shin, Seung-Hee;Cho, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.248-255
    • /
    • 2012
  • In order to develop a protocol to quantify cyanobacteria and Microcystis simultaneously, the primers and probe were designed from the conserved regions of 16S rRNA gene sequences of cyanobacteria and Microcystis, respectively. Probe match analysis of the Ribosomal Database Project showed that the primers matched with over 97% of cyanobacterial 16S rRNA genes, indicating these can be used to amplify cyanobacteria specifically. The TaqMan probe, which is located between two primers, matched with 98.2% of sequences in genus GpXI, in which most Microcystis strains are included. The numbers of cyanobacterial genes were estimated with the emission of SYBR Green from the amplicons with two primers, whereas those of Microcystis spp. were measured from the fluorescence of CAL Fluor Gold 540 emitted by exonuclease activity of Taq DNA polymerase in amplification. It is expected that this method enhances the accuracy and reduces the time to count cyanobacteria and potential toxigenic Microcystis spp. in aquatic environmental samples.

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol;Kim, Sang-Yoon;Hwang, Dong Hyeon;Oh, Doo-Byoung;Kang, Hyun Ah;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.304-312
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.