• Title/Summary/Keyword: exonization

Search Result 5, Processing Time 0.016 seconds

Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene

  • Lee, Ja-Rang;Park, Sang-Je;Kim, Young-Hyun;Choe, Se-Hee;Cho, Hyeon-Mu;Lee, Sang-Rae;Kim, Sun-Uk;Kim, Ji-Su;Sim, Bo-Woong;Song, Bong-Seok;Jeong, Kang-Jin;Lee, Youngjeon;Jin, Yeung Bae;Kang, Philyong;Huh, Jae-Won;Chan, Kyu-Tae
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element-AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crabeating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3' splice site. Six transcript variants (V1-V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5' splice sites in the 5' and 3' flanking regions of CTSF_AluYRa1. Among them, V3-V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification.

Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution

  • Park, Sang-Je;Kim, Young-Hyun;Lee, Sang-Rae;Choe, Se-Hee;Kim, Myung-Jin;Kim, Sun-Uk;Kim, Ji-Su;Sim, Bo-Woong;Song, Bong-Seok;Jeong, Kang-Jin;Jin, Yeung-Bae;Lee, Youngjeon;Park, Young-Ho;Park, Young Il;Huh, Jae-Won;Chang, Kyu-Tae
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.950-958
    • /
    • 2015
  • BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crabeating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3' splice site. Intriguingly, in rhesus and crabeating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5' splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates.

Structure and Expression Analyses of SVA Elements in Relation to Functional Genes

  • Kwon, Yun-Jeong;Choi, Yuri;Eo, Jungwoo;Noh, Yu-Na;Gim, Jeong-An;Jung, Yi-Deun;Lee, Ja-Rang;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.142-148
    • /
    • 2013
  • SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous. Taken together, these data suggest that SVA elements cause transcript isoforms that contribute to modulation of gene regulation in various human tissues.

Molecular Analysis of Alternative Transcripts of CCDC94 Gene in the Brain Tissues of Rhesus Monkey (붉은 털 원숭이의 뇌조직에서 CCDC94 유전자 대체 전사체의 분자적 분석)

  • Yun, Se-Eun;Ahn, Kung;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.459-463
    • /
    • 2011
  • The genome of the rhesus monkey has diverged as an average sequence identity of ~93%. The rhesus monkey has been widely used as a non-human primate in the field of biomedical and evolutional research. Insertion of transposable elements (TEs) induced several events such as transcriptional diversity and different expression in host genes. In this study, 112 transcripts were identified from a full-length cDNA library of brain tissues of the rhesus monkey. One transcript (R54) showed a different expression pattern between human and rhesus monkey tissues. This phenomenon can be an explanation that R54 transcript was acquired by splicing a donor site derived from exonization of the L2A element. Therefore, integration of TEs during primate radiation could contribute to transcriptional diversity and gene regulation.

Biological Function and Structure of Transposable Elements (이동성 유전인자의 구조 및 생물학적 기능)

  • Kim, So-Won;Kim, Woo Ryung;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1047-1054
    • /
    • 2019
  • Transposable elements (TEs) occupy approximately 45% of the human genome and can enter functional genes randomly. During evolutionary radiation, multiple copies of TEs are produced by duplication events. Those elements contribute to biodiversity and phylogenomics. Most of them are controlled by epigenetic regulation, such as methylation or acetylation. Every species contains their own specific mobile elements, and they are divided into DNA transposons and retrotransposons. Retrotransposons can be divided by the presence of a long terminal repeat (LTR). They show various biological functions, such as promoter, enhancer, exonization, rearrangement, and alternative splicing. Also, they are strongly implicated to genomic instability, causing various diseases. Therefore, they could be used as biomarkers for the diagnosis and prognosis of diseases such as cancers. Recently, it was found that TEs could produce miRNAs, which play roles in gene inhibition through mRNA cleavage or translational repression, binding seed regions of target genes. Studies of TE-derived miRNAs offer a potential for the expression of functional genes. Comparative analyses of different types of miRNAs in various species and tissues could be of interest in the fields of evolution and phylogeny. Those events allow us to understand the importance of TEs in relation to biological roles and various diseases.