DOI QR코드

DOI QR Code

Structure and Expression Analyses of SVA Elements in Relation to Functional Genes

  • Kwon, Yun-Jeong (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Choi, Yuri (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Eo, Jungwoo (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Noh, Yu-Na (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Gim, Jeong-An (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Jung, Yi-Deun (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Lee, Ja-Rang (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2013.07.05
  • Accepted : 2013.08.21
  • Published : 2013.09.30

Abstract

SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous. Taken together, these data suggest that SVA elements cause transcript isoforms that contribute to modulation of gene regulation in various human tissues.

Keywords

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921. https://doi.org/10.1038/35057062
  2. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703. https://doi.org/10.1038/nrg2640
  3. Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 2003;73:1444-1451. https://doi.org/10.1086/380207
  4. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, et al. LINE-1 retrotransposition activity in human genomes. Cell 2010;141:1159-1170. https://doi.org/10.1016/j.cell.2010.05.021
  5. Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M, et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 2012;40:1666-1683. https://doi.org/10.1093/nar/gkr863
  6. Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 2011;20:3386-3400. https://doi.org/10.1093/hmg/ddr245
  7. Ono M, Kawakami M, Takezawa T. A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res 1987;15:8725-8737. https://doi.org/10.1093/nar/15.21.8725
  8. Zhu ZB, Jian B, Volanakis JE. Ancestry of SINE-R.C2 a human- specific retroposon. Hum Genet 1994;93:545-551.
  9. Kim HS, Wadekar RV, Takenaka O, Winstanley C, Mitsunaga F, Kageyama T, et al. SINE-R.C2 (a Homo sapiens specific retroposon) is homologous to CDNA from postmortem brain in schizophrenia and to two loci in the Xq21.3/Yp block linked to handedness and psychosis. Am J Med Genet 1999;88:560-566 https://doi.org/10.1002/(SICI)1096-8628(19991015)88:5<560::AID-AJMG23>3.0.CO;2-W
  10. Kim HS, Crow TJ. Presence and phylogenetic relationships of a hominoid-specific retroposon family on the human Y chromosome. Zool Sci 1999;16:963-970. https://doi.org/10.2108/zsj.16.963
  11. Kim H, Crow TJ. Identification and phylogeny of novel human endogenous retroviral sequences belonging to the HERV-W family on the human X chromosome. Arch Virol 1999;144: 2403-2413. https://doi.org/10.1007/s007050050653
  12. Kim HS, Crow TJ. Presence and phylogenetic analysis of HERV-K LTR on human X and Y chromosomes: evidence for recent proliferation. Genes Genet Syst 1999;74:267-270. https://doi.org/10.1266/ggs.74.267
  13. Kim HS, Crow TJ. Phylogenetic relationships of a class of hominoid-specific retro-elements (SINE-R) on human chromosomes 7 and 17. Ann Hum Biol 2000;27:83-93. https://doi.org/10.1080/030144600282406
  14. Kim HS, Crow TJ. Cloning and phylogeny of endogenous retroviral elements belonging to the HERV-K LTR in cDNA library of human fetal brain and Xq21.3 region linked to psychosis. Korean J Genet 2001;23:129-134.
  15. Kim HS, Wadekar RV, Takenaka O, Hyun BH, Crow TJ. Phylogenetic analysis of a retroposon family in african great apes. J Mol Evol 1999;49:699-702. https://doi.org/10.1007/PL00000083
  16. Kim HS, Takenaka O, Crow TJ. Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J Gen Virol 1999;80(Pt 10):2613-2619. https://doi.org/10.1099/0022-1317-80-10-2613
  17. Shen L, Wu LC, Sanlioglu S, Chen R, Mendoza AR, Dangel AW, et al. Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J Biol Chem 1994;269:8466- 8476.
  18. Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu CC, Mori K, Oda T, et al. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 2011;478:127-131. https://doi.org/10.1038/nature10456
  19. Kim DS, Hahn Y. Identification of human-specific transcript variants induced by DNA insertions in the human genome. Bioinformatics 2011;27:14-21. https://doi.org/10.1093/bioinformatics/btq612
  20. Tippmann HF. Analysis for free: comparing programs for sequence analysis. Brief Bioinform 2004;5:82-87. https://doi.org/10.1093/bib/5.1.82
  21. Kim HS, Choi JY, Lee WH, Jang KL, Hyun BH. Nucleotide sequence and phylogenetic analysis of long terminal repeats of human endogenous retrovirus K family (HERV-K) on human chromosomes. Microb Comp Genomics 2000;5:121-127. https://doi.org/10.1089/omi.1.2000.5.121
  22. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific retroposon family. J Mol Biol 2005;354:994-1007. https://doi.org/10.1016/j.jmb.2005.09.085
  23. Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, et al. Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics 2010;26:i350-i357. https://doi.org/10.1093/bioinformatics/btq216
  24. Savage AL, Bubb VJ, Breen G, Quinn JP. Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns. BMC Evol Biol 2013;13:101. https://doi.org/10.1186/1471-2148-13-101
  25. Sin HS, Huh JW, Kim DS, Kang DW, Min DS, Kim TH, et al. Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch Virol 2006;151:1985-1994. https://doi.org/10.1007/s00705-006-0764-5
  26. Ruda VM, Akopov SB, Trubetskoy DO, Manuylov NL, Vetchinova AS, Zavalova LL, et al. Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res 2004;104:11-16. https://doi.org/10.1016/j.virusres.2004.02.036
  27. Gerlo S, Davis JR, Mager DL, Kooijman R. Prolactin in man: a tale of two promoters. Bioessays 2006;28:1051-1055. https://doi.org/10.1002/bies.20468
  28. Xin D, Hu L, Kong X. Alternative promoters influence alternative splicing at the genomic level. PLoS One 2008;3:e2377. https://doi.org/10.1371/journal.pone.0002377
  29. Damert A, Lower J, Lower R. Leptin receptor isoform 219.1: an example of protein evolution by LINE-1-mediated human- specific retrotransposition of a coding SVA element. Mol Biol Evol 2004;21:647-651. https://doi.org/10.1093/molbev/msh056
  30. Mersch B, Sela N, Ast G, Suhai S, Hotz-Wagenblatt A. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements. BMC Genet 2007;8:78.
  31. van der Klift HM, Tops CM, Hes FJ, Devilee P, Wijnen JT. Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome. Hum Mutat 2012;33:1051-1055. https://doi.org/10.1002/humu.22092
  32. Akman HO, Davidzon G, Tanji K, Macdermott EJ, Larsen L, Davidson MM, et al. Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene. Neuromuscul Disord 2010;20:397-402. https://doi.org/10.1016/j.nmd.2010.04.004
  33. Wilund KR, Yi M, Campagna F, Arca M, Zuliani G, Fellin R, et al. Molecular mechanisms of autosomal recessive hypercholesterolemia. Hum Mol Genet 2002;11:3019-3030. https://doi.org/10.1093/hmg/11.24.3019

Cited by

  1. Identification of polymorphic SVA retrotransposons using a mobile element scanning method for SVA (ME-Scan-SVA) vol.7, pp.1, 2016, https://doi.org/10.1186/s13100-016-0072-x
  2. Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells vol.9, pp.4, 2016, https://doi.org/10.1242/dmm.022590