• 제목/요약/키워드: existing network

검색결과 5,697건 처리시간 0.029초

사용성 및 프라이버시 개선을 위한 NFT 플랫폼 연구 (A Study on Non-Fungible Token Platform for Usability and Privacy Improvement)

  • 강명조;김미희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권11호
    • /
    • pp.403-410
    • /
    • 2022
  • 블록체인 기반으로 생성된 NFT는 자신만의 고유한 값을 지녀 위변조가 불가하며 다른 토큰이나 코인과 교환될 수 없다. 이러한 특성을 이용해 이미지나 비디오, 예술작품, 게임 캐릭터 및 아이템 등과 같은 디지털 자산에 NFT를 발행하여 사이버상에 존재하는 수많은 사용자와 객체들 사이에서 디지털 자산의 소유권을 주장할 수 있으며, 동시에 원본 증명도 가능하다. 하지만, 2020년 초기부터 NFT에 관한 관심이 폭발하여 블록체인 네트워크에 많은 부하를 일으켰고, 이에 따라 사용자들은 연산 처리가 늦어지거나 채굴 과정에 매우 큰 수수료가 발생하는 문제점을 겪고 있다. 또한, 사용자들의 모든 행위가 블록체인 장부에 저장되고 디지털 자산은 블록체인 기반 분산 파일 저장 시스템에 저장되어 자신의 신분을 밝히고 싶지 않은 사용자의 개인정보가 불필요하게 노출될 가능성이 있다. 본 논문에서는 클라우드 컴퓨팅과 접근 게이트, 변환 테이블, 클라우드 아이디 등을 활용한 NFT 플랫폼을 제안하여 기존 시스템에서 발생하는 사용성 문제와 프라이버시 문제를 개선할 수 있도록 한다. 로컬시스템과 클라우드 시스템의 성능 비교를 위해 스마트 계약 배포 및 NFT 발행 트랜잭션 연산 처리에 사용된 가스를 측정했다. 그 결과, 클라우드 시스템이 같은 실험 환경 및 파라미터를 사용했음에도 스마트 계약 배포에는 약 3.75%, NFT 생성 트랜잭션 처리에는 약 4.6%의 가스를 절약하는 결과를 도출했고, 이를 통해 클라우드 시스템이 로컬시스템보다 효율적으로 연산을 처리할 수 있음을 확인했다.

빅데이터 분석을 활용한 메타버스 플랫폼 연구 동향 분석 (A Study on Research Trends in Metaverse Platform Using Big Data Analysis)

  • 홍진욱;한정완
    • 디지털융복합연구
    • /
    • 제20권5호
    • /
    • pp.627-635
    • /
    • 2022
  • 본 최근 코로나19로 인해 비대면 상황이 장기간 지속화됨에 따라 사회 전반에 걸쳐 IOT, AR, VR, 빅데이터와 같은 4차 산업 혁명의 기반 기술이 메타버스 플랫폼에 전반적으로 영향을 미치고 있다. 이러한 사회, 문화 등 외부 환경의 변화는 학문의 발전에 영향을 미칠 수 있으며, 변화에 대비하여 기존 성과물을 체계적으로 정리하는 일은 매우 중요하다. 한국 교육학술정보원(RISS)에서 키워드에 '메타버스 플랫폼'을 포함하는 자료를 수집하여 빅데이터 분석 중 하나인 텍스트 마이닝 기법을 사용하였다. 수집된 데이터 자료를 워드 클라우드 빈도 분석, 키워드 간 연결강도, 구조등위성 분석을 하여 메타버스 플랫폼 연구 동향을 살펴보았다. 연구결과 워드 클라우드 분석에서는 '활용', '디지털', '기술', '교육' 순으로 키워드가 나타났다. 키워드 간 연결강도(N-gram) 분석 결과 '에듀→테크'의 연결강도가 가장 높게 나타났으며, 워드 연쇄 군집 수의 총 3개의 군집이 도출되었다. 세부 연구영역은 '디지털 기술'을 포함 다섯 영역으로 분류되었다. 종합적으로 고려했을 때 메타버스 플랫폼 분야의 학문적 연구 주제 범위는 그리 넓지 않았으며, 장기 지향적 관점에서 보다 적극적인 연구 주제의 발굴 및 논의가 필요해 보인다.

국내학회지 논문 리뷰를 통한 원격탐사 분야 딥러닝 연구 동향 분석 (Analysis of Deep Learning Research Trends Applied to Remote Sensing through Paper Review of Korean Domestic Journals)

  • 이창희;윤예린;배세정;어양담;김창재;신상호;박소영;한유경
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.437-456
    • /
    • 2021
  • 우리나라 원격탐사 분야에서는 2017년을 기점으로 딥러닝의 뛰어난 성능을 바탕으로 연구 성과를 나타내기 시작하여, 현재는 영상 전처리부터 활용까지 원격탐사의 거의 모든 분야에서 딥러닝을 적용하는 연구가 수행되고 있다. 원격탐사 분야에 적용된 딥러닝의 연구 동향 분석을 수행하기 위해, 2021년 10월까지 출판된 원격탐사 분야에 딥러닝이 적용된 국내 논문들을 수집하였다. 수집된 60여 편의 논문들을 바탕으로 딥러닝 네트워크 목적, 원격탐사 활용 분야, 원격탐사 영상 취득 탑재체별로 나누어 연구 동향 분석을 수행하였다. 또한, 논문에서 훈련자료 구축에 효과적으로 이용되었던 오픈소스데이터들을 정리하였다. 본 논문을 통해 현시점에서 딥러닝이 원격탐사 분야에 자리잡기 위해 해결해야 할 문제점들을 제시하면서, 향후 연구자들의 원격탐사 분야에 딥러닝 기술을 접목하기 위한 연구 방향을 설정하는 데 도움을 제공하고자 한다.

배움공동체에 대한 탐색적 연구 : covid19 언택트시대를 중심으로 (An Exploratory Study on the Learning Community: Focusing on the Covid19 Untact Era)

  • 정수정;임홍남;박홍재
    • 융합정보논문지
    • /
    • 제12권5호
    • /
    • pp.237-245
    • /
    • 2022
  • 본 연구는 언택트시대의 배움공동체에 대한 사회적 담론이 어떠한지 살펴보고, 팬데믹이라는 사회적 상황 속에서 아동을 위한 배움공동체가 나아가야할 방향에 대해 논의해 보고자한다. 이를 위해 2020년 1월 20일부터 2021년 1월 20일까지 1년 동안의 빅데이터를 '언택트+배움공동체'라는 키워드로 인터넷 포털사이트(구글, 다음, 네이버 등의 뉴스)에서 데이터를 수집 및 분석하였다. 분석결과, 단어빈도 및 네트워크분석에서 '마을교육공동체', '운영', '활동', '코로나19', '지원', '온라인' 등의 단어가 언택트시대의 배움공동체와 관련이 높은 것으로 도출되었다. 이는 배움공동체 내에서 마을의 교육공동체가 주축이 되어 코로나19라는 상황 속에서도 마을 활동가와 주민협의회 등이 뜻을 모아 코로나19로 멈춰진 아동의 일상을 회복하고 관계 회복을 위한 노력을 온라인 매체를 활용하여 지원 해줄 수 있다는 것을 보여준다. 결론적으로 단어빈도 분석을 통해 배움공동체와 관련된 핵심키워드를 파악하고 배움공동체에 대한 사회적 경향을 살펴보았다는데 의의가 있으며, 코로나19의 장기화로 아동의 공적 돌봄·교육의 틈새와 한계에 대한 대안으로 배움공동체의 도입 및 활성화를 위한 기초자료로써 시사점을 가진다

2015 개정 교육과정에 따른 초등 과학 검정 교과서 내용 다양성 분석 - '물체의 무게' 단원을 중심으로 - (Content Diversity Analysis of Elementary Science Authorized Textbooks according to the 2015 Revised Curriculum: Focusing on the "Weight of an Object" Unit)

  • 신정윤;박상우;정현지;홍미나;김현재
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제41권2호
    • /
    • pp.307-324
    • /
    • 2022
  • 이 연구에서는 2015 개정 교육과정에 따른 초등 과학 국정 교과서와 동 교육과정에 따라 2022년에 출판된 초등 과학과 검정 교과서 7종의 '물체의 무게' 단원에 진술된 과학 개념의 서술과 탐구활동 내용의 특징을 비교하여 초등 과학 검정 교과서의 내용 다양성을 분석해 보았다. 이를 위해 각 교과서의 설명텍스트에서 개념 서술 내용의 흐름, 개념 서술 과정에서의 특이점을 분석하였고, 언어네트워크 분석 방법으로 노드와 링크 수, 연결중심성이 높은 중심 단어를 분석 하였다. 또한 교과서에 제시된 탐구활동에서 탐구활동 유형, 탐구과정기능 및 탐구 활동 내용을 분석하였다. 연구 결과, 검정 교과서에서는 과학 개념의 서술이나 탐구활동 내용 구성에서 다양성이 잘 드러나지 않았다. 하위 개념의 포함 여부, 중심 단어 등이 교과서별로 유사하였다. 탐구활동을 비교하였을 때에도 탐구활동 내용과 탐구 유형, 탐구과정기능이 유사하였다. 특히 이전 교과서에서 제시되지 않았던 새로운 탐구활동 주제나 실험 방법을 도입한 경우는 없었다. 하지만 동일한 교육과정을 바탕으로 개발되었음에도 불구하고 검정 교과서 체제의 장점을 살릴 수 있는 노력들이 일부 시도되고 있었다. 핵심 내용을 설명하기 위한 하위 개념의 배치 순서가 교과서마다 달라 개념을 설명하는 과정이 몇 가지 유형으로 구분되었고, 탐구활동의 내용은 동일하였지만 기존 실험에서의 어려움을 개선하고 보완하기 위해 탐구 활동 준비물이 교과서별로 서로 다르게 나타나기도 하였다. 이를 바탕으로 검정 교과서의 장점을 살릴 수 있는 시도가 계속되어야 할 것이다.

딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구 (A Study on A Deep Learning Algorithm to Predict Printed Spot Colors)

  • 전수현;박재상;태현철
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 - (A Comparative Research on End-to-End Clinical Entity and Relation Extraction using Deep Neural Networks: Pipeline vs. Joint Models)

  • 최성필
    • 한국문헌정보학회지
    • /
    • 제57권1호
    • /
    • pp.93-114
    • /
    • 2023
  • 정보추출은 문헌 내에 존재하는 개체명을 인식함과 동시에 이들 간의 의미적 관계까지도 식별하여 최종적으로 문헌 내에 포함된 의미적 트리플을 자동으로 추출하여 활용할 수 있으므로 문헌에 대한 심층적인 분석과 이해에 많은 도움을 줄 수 있다. 그러나 지금까지 대부분의 정보추출에 대한 연구는 개체명 인식과 관계추출이 개별 연구로 각각 분리되어 진행되었으며, 그 결과 입력 문헌에 대한 정보추출의 최종 출력인 의미적 트리플 추출 성능에 대한 객관적이고 정확한 평가가 제대로 이루어지지 않았다. 이에 본 논문에서는 진료 기록 문헌에 나타나는 개체명과 그들 간의 관계를 트리플 형태로 직접 추출할 수 있는 종단형 정보추출의 2가지 모델인 파이프라인 및 결합형 모델을 구축하는 구체적인 방법론을 제시하고 성능 비교 실험을 진행하였다. 우선 파이프라인 모델은 양방향 GRU-CRFs를 활용한 개체명 인식 모듈과 다중 인코딩 기반 관계추출 모듈로 구현되었고, 결합형 모델을 위해서는 다중 헤드 레이블링 기반의 양방향 GRU-CRFs이 적용되었다. 두 가지 시스템을 바탕으로 진료기록 문헌 내의 개체명과 관계를 모두 태깅하여 구축된 i2b2/VA 2010 데이터셋을 활용한 비교 실험에서 파이프라인 모델의 성능이 5.5%(F-measure) 더 높게 나타났다. 추가적으로, 대규모 신경망 언어모델과 수작업으로 구축된 자질 정보를 활용한 최고 수준의 기존 시스템과의 비교 실험을 통해, 본 논문에서 구현한 종단형 모델의 객관적인 성능 수준을 파악할 수 있었다.

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.

OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현 (Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA)

  • 김지형
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.189-196
    • /
    • 2023
  • 4차 산업혁명을 주도하는 기술로서 IoT, 빅데이터, 인공지능, CPS 등이 발전하면서 산업 현장에서 생산성과 효율성을 향상시키기 위한 디지털 트윈의 중요성이 부각되고 있다. 디지털 트윈은 실제 물리적 객체들의 디지털 복제로서, 객체의 속성과 상태를 유지하며 작동하는 가상 모델이다. CPS는 사이버 세계와 물리 세계의 상호작용을 위한 시스템으로, 디지털 트윈은 CPS의 고급형 기술로 볼 수 있다. 디지털 트윈은 AI, XR, 5G 등 다양한 요소 기술의 등장으로 구현 속도가 가속화되었다. 센서 기술의 발전과 IoT, 인공지능, 빅데이터, 클라우드 등의 관련 기술 발전으로 디지털 트윈 시장이 성장하고 있다. 이에 따라 기업들은 비즈니스 인텔리전스와 관련된 솔루션을 도입하여 프로세스 최적화, 비용 효율성, 생산성을 향상시키는 경향이 있다. 본 연구에서는 디지털 트윈 기술과 CPS를 결합하여 이기종 로봇의 실시간 3D 디지털 트윈을 구축하는 것이 목표이다. 이를 위해 유비씨의 FLEXING CPS와 FLEXING EDGE를 활용하여 데이터 수집과 관리를 수행한다. 프로젝트 구성원은 프로토콜 설정, 데이터 수집 및 전달, 3D 디지털 트윈 시뮬레이션을 담당한다. 이를 통해 CPS와 디지털 트윈을 통합한 기술의 가능성을 확인하고, 산업 현장에서 생산성과 효율성을 향상시킬 수 있다.

Design and Implementation of Economical Smart Wall Switch with IEEE 802.11b/g/n

  • Myeong-Chul Park;Hyoun-Chul Choi;Cha-Hun Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.103-109
    • /
    • 2023
  • 본 논문에서는 IEEE 802.11b/g/n 규격의 2.4GHz 대역 통신 기반의 스마트 벽스위치를 제안한다. 4차 산업 시대로 진화하면서 스마트 홈 솔루션 개발이 활발히 진행 중이며 스마트 벽스위치에 대한 적용사례가 증가하고 있다. 가격 경쟁력을 통해 시장을 선점하고 있는 중국 제품은 대부분 블루투스와 지그비 통신 방식의 스위치를 사용하고 있다. 하지만, 지그비 통신은 저전력인데 반해 블루투스보다 통신속도가 늦고 별도의 허브를 통한 네트워크 구성이 추가적으로 요구되는 단점이 있다. 블루투스 방식은 와이파이 통신에 비해 통신 범위와 속도가 낮고 통신 대기시간이 비교적 길며 보안성이 취약한 것이 문제점이다. 본 연구에서는 와이파이 통신 기술을 적용한 IEEE 802.11b/g/n 스마트 벽스위치를 개발하였다. 또한, 2선식 구조를 통하여 건물 내 별도의 중선선 시공을 통한 추가 비용이 발생하지 않게 설계하였다. 연구의 결과물은 기존 벽스위치에 비해 30%이상 저렴하여 기술 경쟁력뿐만 아니라 가격 경쟁력에서도 시장을 선점할 수 있을 것으로 판단한다.