• 제목/요약/키워드: existence properties of a positive steady-state

검색결과 3건 처리시간 0.017초

EXISTENCE OF NON-CONSTANT POSITIVE SOLUTION OF A DIFFUSIVE MODIFIED LESLIE-GOWER PREY-PREDATOR SYSTEM WITH PREY INFECTION AND BEDDINGTON DEANGELIS FUNCTIONAL RESPONSE

  • MELESE, DAWIT
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.393-407
    • /
    • 2022
  • In this paper, a diffusive predator-prey system with Beddington DeAngelis functional response and the modified Leslie-Gower type predator dynamics when a prey population is infected is considered. The predator is assumed to predate both the susceptible prey and infected prey following the Beddington-DeAngelis functional response and Holling type II functional response, respectively. The predator follows the modified Leslie-Gower predator dynamics. Both the prey, susceptible and infected, and predator are assumed to be distributed in-homogeneous in space. A reaction-diffusion equation with Neumann boundary conditions is considered to capture the dynamics of the prey and predator population. The global attractor and persistence properties of the system are studied. The priori estimates of the non-constant positive steady state of the system are obtained. The existence of non-constant positive steady state of the system is investigated by the use of Leray-Schauder Theorem. The existence of non-constant positive steady state of the system, with large diffusivity, guarantees for the occurrence of interesting Turing patterns.

PHASE ANALYSIS FOR THE PREDATOR-PREY SYSTEMS WITH PREY DENSITY DEPENDENT RESPONSE

  • Chang, Jeongwook;Shim, Seong-A
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권4호
    • /
    • pp.345-355
    • /
    • 2018
  • This paper looks into phase plane behavior of the solution near the positive steady-state for the system with prey density dependent response functions. The positive invariance and boundedness property of the solution to the objective model are proved. The existence result of a positive steady-state and asymptotic analysis near the positive constant equilibrium for the objective system are of interest. The results of phase plane analysis for the system are proved by observing the asymptotic properties of the solutions. Also some numerical analysis results for the behaviors of the solutions in time are provided.

CONVERGENCE PROPERTIES OF PREDATOR-PREY SYSTEMS WITH FUNCTIONAL RESPONSE

  • Shim, Seong-A
    • 호남수학학술지
    • /
    • 제30권3호
    • /
    • pp.411-423
    • /
    • 2008
  • In the field of population dynamics and chemical reaction the possibility or the existence of spatially and temporally nonhomogeneous solutions is a very important problem. For last 50 years or so there have been many results on the pattern formation of chemical reaction systems studying reaction systems with or without diffusions to explain instabilities and nonhomogeneous states arising in biological situations. In this paper we study time-dependent properties of a predator-prey system with functional response and give sufficient conditions that guarantee the existence of stable limit cycles.