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PHASE ANALYSIS FOR THE PREDATOR-PREY SYSTEMS

WITH PREY DENSITY DEPENDENT RESPONSE

Jeongwook Chang a and Seong-A Shim b, ∗

Abstract. This paper looks into phase plane behavior of the solution near the pos-
itive steady-state for the system with prey density dependent response functions.
The positive invariance and boundedness property of the solution to the objective
model are proved. The existence result of a positive steady-state and asymptotic
analysis near the positive constant equilibrium for the objective system are of inter-
est. The results of phase plane analysis for the system are proved by observing the
asymptotic properties of the solutions. Also some numerical analysis results for the
behaviors of the solutions in time are provided.

1. Introduction

In 1910, Alfred J. Lotka[5] had proposed a mathematical model for predator and

prey relationship in the theory of autocatalytic chemical reactions, which has been

called later as “Lotka-Volterra predator-prey model” :

(1)


Ut = U(a1 − b1U − c1V ), t ∈ (0,∞),

Vt = V (a2 + b2U − c2V ), t ∈ (0,∞)

U(0) = U0 ≥ 0 and V (0) = V0 ≥ 0.

The parameters bi, ci (i = 1, 2), a1 and q represent positive constants. Here only

the coefficient a2 might be a nonpositive constant. Lotka[6] extended this model in
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1920 to the predator-prey type reaction phenomena between two species of a plant

and a herbivorous animal. The same model was independently published in 1926 by

Vito Volterra as a mathematical representation for the observation of predator and

prey fish population changes in Adriatic Sea after World War I(1914-1918).

C. S. Holling extended the Lotka-Volterra predator-prey model to include func-

tional response in his classical paper published in 1959[2] and 1965[3]. This extended

model has become recognized as a the RosenzweigMcArthur model[7] which have

been applied to the dynamical behaviors of natural populations of predator and

prey, for example the lynx and snowshoe hare data which had been constructed by

the Hudson’s Bay Company in [1] and the moose and wolf populations which had

been observed in Isle Royale National Park[4].

In this work we analyze the phase plane dynamical behavior of the following

predator-prey model with density dependent functional response which is reduced

to RosenzweigMcArthur model by scalings of the variables :

(2)


Uτ = U(a1 − b1U)− c1UV

1 + qU
, τ ∈ (0,∞),

Vτ = a2V +
b2UV

1 + qU
, τ ∈ (0,∞)

U(0) = U0 ≥ 0 and V (0) = V0 ≥ 0.

where a1, b1, b2, c1, q represent positive constants, and here a2 might be a nonpositive

constant. The detailed explanations for the meanings of the coefficients and the form

of the response functions of the given type may be found in [8] and references therein.

The existence result of a positive constant equilibrium (U, V ) to the model (2) has

been obtained in [8]. An analysis on the stability for the positive equilibrium point

(U, V ) also practiced in [8] under certain conditions. The present paper investigate

phase plane behavior of the solution (U, V ) near the positive constant equilibrium

(U, V ) for the model (2) with a2 < 0 and 0 ≤ q < −
(
b1
a1

+
b2
a2

)
. We also observe

some numerical analysis results.

In the course the system (2) is nondimensionalized to a simpler form (1) as shown

in Section 2. In Section 3 the positive invariance and boundedness properties of the

solution function (u, v) of the model (1) are proved. Section 4 deals the existence of

a positive constant equilibrium (u, v) and asymptotic analysis near (u, v) with the

model (1). The results of phase plane analysis for the system (1) are also shown in

Section 4.
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2. Nondimensionalization of the System

The predator-prey system with density dependent functional response (2) can be

nondimensionalized to the following simplified system :

(1)


ut = u

(
1− u

α

)
− uv

1 + u
, t ∈ (0,∞),

vt = βγv +
βuv

1 + u
, t ∈ (0,∞),

u(0) = u0 ≥ 0 and v(0) = v0 ≥ 0

by scaling variables as U =
1

q
u, V =

a1
c1

v, τ =
1

a1
t. This is checked as follows.

In the first equation of the system (2)

Uτ =
1

q
ut ·

dt

dτ

=
a1
q
ut,

U(a1 − b1U)− c1UV

1 + qU
=

1

q
u

(
a1 −

b1
q
u

)
− a1uv

q(1 + u)

=
a1
q
u

(
1− b1

a1q
u

)
− a1

q
· uv

1 + u
,

thus it is reduced to

ut = u
(
1− u

α

)
− uv

1 + u
,

where α =
a1q

b1
.

In the second equation of the system (2)

Vτ =
a1
c1

vt ·
dt

dτ

=
a21
c1

vt,

a2V +
b2UV

1 + qU
=

a1a2
c1

v +
a1b2uv

c1q(1 + u)

=
a1
c1

(
a2v +

b2uv

q(1 + u)

)
,

thus it is reduced to

vt = βγv +
βuv

1 + u
,
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where β =
b2
a1q

, γ =
a2q

b2
. Here notice that γ < 0 if a2 < 0.

3. Positivity and Boundedness of the Solutions

Let us define two functions of vector variable f, g : R2 → R2 as

f(u, v) = u
(
1− u

α

)
− uv

1 + u
, g(u, v) = βγv +

βuv

1 + u

which are the response functions of the first and second equation in the system (1).

We see that the response functions f(u, v) and g(u, v) are smooth in the domain

Ω = {(u, v) | u > 0, v > 0}. The line v = 0, that is the u-axis, is the nullcline(zero

set) of the response function g(u, v), and the first equation of the system (1) becomes

ut = u
(
1− u

α

)
for t ∈ (0,∞)

which has a nonnegative bounded solution. This implies that the nonnegative part

of the u-axis is invariant for the system (1). The line u = 0, that is the v-axis, is

the nullcline(zero set) of the response function f(u, v), and the second equation of

the model (1) becomes

vt = −βγv for t ∈ (0,∞)

which has a nonnegative bounded solution. This implies that the nonnegative part

of the v-axis is also invariant for the system (1). Therefore the u-axis and v-axis

are orbits of the system (1), respectively. Since different orbits cannot intersect, it

is concluded that the first quadrant Ω is invariant for the system (1). Thus we have

the local existence result of the solution to the system (1) in Ω.

Now in the following lemma we prove the boundedness of the solution.

Lemma 3.1. For the system (1) with α > 0, β > 0, and γ < 0, it hold that(
u+

1

β
v

)
t

< 0 for u > α

and therefore every orbit (u(t), v(t)) stays in a bounded and closed region in the set

{(u, v) | u > 0, v > 0} for every t ≥ 0.

Proof. Considering the second equation of the model (1), we have that

(1)
1

β
vt = γv +

uv

1 + u
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By adding the first equation of the model (1) and equation (1), it is obtained that(
u+

1

β
v

)
t

=
(
1− u

α

)
u+ γv

From the given condition that α > 0, β > 0, and γ < 0, it is concluded that(
u+

1

β
v

)
t

< 0

for u > α. �

4. Phase Plane Analysis

Now we analyze the phase plane of the model (1) under the condition that :

(1) α > 0, β > 0, −1 < γ < 0 and αγ + α+ γ > 0

Lemma 4.1. Assume the condition (1) for system (1). Then the model (1) pos-

sesses a unique positive constant equilibrium (u, v), where

(2) u =
−γ

1 + γ
, v =

α+ αγ + γ

α(1 + γ)2
.

Proof. Computing the positive roots of the response function of the second equation

of the model (1) we have

(3) βγ +
βu

1 + u
= 0,

that is,

u =
−γ

1 + γ
.

From the response function of the first equation of the system (1) to solve for the

positive steady-state (u, v) the following equation should hold :

(4) 1− u

α
− v

1 + u
= 0.

Since

1 + u =
1

1 + γ

equation (4) is reduced to

1 +
γ

α(1 + γ)
− (1 + γ)v = 0,

so it is obtained that

v =
α+ αγ + γ

α(1 + γ)2
.

By the condition (1), u > 0 and v > 0. Thus it concludes the proof. �
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Now we investigate asymptotic behaviors of the solution to the system (1) near

(u, v) in the theorem given below.

Theorem 4.1. Let us assume the condition (1) for system (1). Then the model (1)

displays a Hopf bifurcation phenomenon around (u, v) at the parameter value α = α∗
γ,

where

α∗
γ =

1− γ

1 + γ
.

That means, (u, v) becomes an asymptotically stable constant equilibrium if 0 < α <

α∗
γ, but an unstable constant equilibrium if α > α∗

γ.

Proof. The response function of the equations in the model (1) are defined to be

functions of two variables (u, v) as follows :

f(u, v) = u
(
1− u

α

)
− uv

1 + u

and

g(u, v) = βγv +
βuv

1 + u
.

The system (1) is linearized around the positive constant equilibrium (u, v) that

was obtained in Lemma 4.1. The linearized system is written with new variables

η(t) = u(t)− u and ζ(t) = v(t)− v as follows :

(5)


dη

dt

dζ

dt

 = A

(
η

ζ

)
,

where

A =


df

du

df

dv

dg

du

dg

dv


(u,v)

=

 1− 2u

α
− v

(1 + u)2
− u

1 + u

βv

(1 + u)2
βγ + β

u

1 + u

 .

From equation (3) and (4),

df

du

∣∣∣∣
(u,v)

= 1− 2u

α
− 1

(1 + u)

(
1− u

α

)
=

(α− 1− 2u)u

(1 + u)α
,

= −(αγ + α+ γ − 1)γ

(1 + γ)α
,

df

dv

∣∣∣∣
(u,v)

= γ,
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dg

du

∣∣∣∣
(u,v)

=
(αγ + α+ γ)β

α
,

and
dg

dv

∣∣∣∣
(u,v)

= 0.

Thus it is simplified to

A =

 −(αγ + α+ γ − 1)γ

(1 + γ)α
γ

(αγ + α+ γ)β

α
0

 .

Here we see that

detA = −(αγ + α+ γ)βγ

α
> 0

by the condition (1). Now we observe that

trA = −(αγ + α+ γ − 1)γ

α(1 + γ)
.

Thus

(6) trA < 0 if and only if αγ + α+ γ > 1

and

(7) trA > 0 if and only if 0 < αγ + α+ γ < 1.

For the purpose to determine the bifurcation value α∗
γ for α, we solve the equation

trA = 0, that is,

αγ + α+ γ = 1, or equivalently (α+ 1)(γ + 1) = 2.

Hence we obtain that

(8) α∗
γ =

1− γ

1 + γ
.

Furthermore we have to check the following transversality condition to confirm the

Hopf bifurcation phenomenon at α = α∗
γ :

(9)
d(Re ξ+)

dα

∣∣∣∣
α=α∗

γ

̸= 0,

where ξ+ is the positive root of the characteristic equation ξ2 − (trA)ξ + detA = 0

corresponding to the linearized system (5). The positive eigenvalue ξ+ of the matrix
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A is ξ+ = 1
2

(
trA+

√
(trA)2 − 4 detA

)
. From the facts that detA > 0 and trA = 0

at α = α∗
γ , we have that (trA)2 − 4 detA < 0 around α = α∗

γ . Therefore

Re ξ+ = 1
2 trA,

and the transversality condition (9) is expressed as

(10)
d

dα
(trA)

∣∣∣∣
α=α∗

γ

=
d

dα

(
−γ(αγ + α+ γ − 1)

α(1 + γ)

)∣∣∣∣
α=α∗

γ

̸= 0,

Now it requires some standard computations to check that

d

dα
(trA)

∣∣∣∣
α=α∗

γ

= − (1− γ)γ

(1 + γ)α2

∣∣∣∣
α=α∗

γ

= −(1 + γ)γ

1− γ
̸= 0.

Thus the transversality condition (9) holds. Finally from (6) and (7) we have that

trA < 0 if 0 < α < α∗
γ and trA > 0 if α > α∗

γ ,

and thus (u, v) is an asymptotically stable constant equilibrium if 0 < α < α∗
γ , but

an unstable constant equilibrium if α > α∗
γ . �

Now we analyze the system (1) numerically to confirm the results obtained in

Theorem 4.1. Let us fix the value of the parameter β = 1 and γ = −0.5 and

compute to obtain the the bifurcation value α∗
−0.5 = 3 for the positive parameter α

using (8) in Theorem 4.1. From the result of Theorem 4.1 we see that (u, v) is an

asymptotically stable constant equilibrium if 0 < α < 3, but an unstable constant

equilibrium if α > 3 in this setting.

Figure 1. The graphs of the function u(t) and the function v(t) for
the model (1) with α = 2, β = 1, γ = −0.5, and u(0) = 3, v(0) = 1
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Figure 2. The phase plane behavior of (u(t), v(t)) for the model (1)
with α = 2, β = 1, γ = −0.5, and u(0) = 3, v(0) = 1

Figure 3. The graphs of the function u(t) and the function v(t) for
the model (1) with α = 4, β = 1, γ = −0.5, and u(0) = 3, v(0) = 1

As an example, if α = 2, β = 1, γ = −0.5 then the positive constant equilibrium

(u, v) = (1, 1) which is obtained from the result in Lemma 4.1 is asymptotically

stable, and the positive solution (u(t), v(t)) to the model (1) stays bounded and

shows a convergent behavior to (u, v) = (1, 1) as t → ∞. Figure 1 shows the graphs

of the functions u(t) and v(t) for t ∈ (0, 100), and Figure 2 shows the phase plane

behavior of the solution function (u(t), v(t)) in this case with u(0) = 3, v(0) = 1.

For another example, if α = 4, β = 1, γ = −0.5 then the positive constant

equilibrium (u, v) = (1, 1.5) is unstable, and the positive solution (u(t), v(t)) to the
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Figure 4. The phase plane behavior of (u(t), v(t)) for the model (1)
with α = 4, β = 1, γ = −0.5, and u(0) = 3, v(0) = 1

model (1) is bounded, but does not converge to (u, v). In this case we see that the

solution function (u(t), v(t)) converges to an periodic orbit as t → ∞. Figure 3

shows the graphs of the functions u(t) and v(t) in for t ∈ (0, 100), and Figure 4

shows the phase plane behavior of the solution function (u(t), v(t) in this case with

u(0) = 3, v(0) = 1.
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