• 제목/요약/키워드: exciton peak

검색결과 90건 처리시간 0.025초

수소 플라즈마 처리를 거친 ZnO 박막에 대한 PL 연구 (PL Study on ZnO Thin Films After H-plasma Treatment)

  • 조재원;이석주
    • 한국전기전자재료학회논문지
    • /
    • 제28권1호
    • /
    • pp.17-20
    • /
    • 2015
  • The physical effects of H-plasma treatment on ZnO thin film have been studied using photoluminescence(PL) spectroscopy. Four characteristic peaks have been identified: (i) $D^0X$ peak (neutral donor-bound exciton), showing relatively small integrated intensity after H-plasma treatment, indicates that H-plasma passivates the neutral donors in ZnO at low temperatures. The rapid decrease in the integrated intensity of the peak as the temperature goes up is considered to be due to the ionization of neutral donors. (ii) H-related complex-bound exciton peak appears at the low temperatures (10 K~80 K) after H-plasma treatment, showing the same thermal evolution as $D^0X$ peak. (iii) FX (free exciton) peak starts to show up at 60 K and grows more and more as the temperature goes up, which is considered to be related to the increase in free electron concentration in the film. (iv) violet band is intensified after H-plasma, which means more defects and impurities are generated by H-plasma process.

수직 Bridgman 법에 의한 CdTe 단결정 성장과 특성 (Growth and characterization of CdTe single crystal by vertical Bridgman method)

  • 홍명석;홍광준
    • 센서학회지
    • /
    • 제14권6호
    • /
    • pp.369-373
    • /
    • 2005
  • High quality CdTe single crystal for the solar cell fabrication was grown by vertical Bridgman method. The etch pits patterns of (111) surfaces of CdTe etched by Nakagawa solution was observed the (111)A compesed of Cd atoms with typical triangle etch pits of pyramid mode. From the photoluminescence measurement on (111)A, we observed free exciton ($E_{x}$) existing only high quality crystal and neutal acceptor bound exciton ($A^{0}$,X) having very strong peak intensity. Then, the full width at half maximum and binding energy of neutral acceptor bound exciton were 7 meV and 5.9 meV, respectively. By Haynes rule, an activation enery of impurity was 59 meV. Therefore, the origins on impurity level acting as a neutral acceptor were associated Ag or Cu elements.

Hot Wall Epitaxy(HWE) 방법에 의해 성장된 $CuInS_2$ (Growth and Characterization of $CuInS_2$ Single Crystal Thin Film by Hot Wall Epitaxy)

  • 최승평;홍광준
    • 한국결정학회지
    • /
    • 제11권3호
    • /
    • pp.137-146
    • /
    • 2000
  • The stoichiometric mix of evaporating materials for he CuInS₂ single crystal thin films was prepared. To obtain the single crystal thin films, CuINS₂ mixed crystal was deposited on etched semi-insulator GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperature were 640℃ and 430℃, respectively and the thickness of the single crystal thin films was 2 ㎛. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility deduced from Hall data are 9.64x10/sup 22//㎥ and 2.95x10/sup -2/ ㎡/V·s, respectively at 293 K. he optical energy gap was found to be 1.53 eV at room temperature. From the photocurrent spectrum obtained by illuminating perpendicular light on the c-axis of the thin film, we have found that the values of spin orbit coupling splitting ΔSo and the crystal field splitting ΔCr were 0.0211 eV and 0.0045 eV at 10K, respectively. From PL peaks measured at 10K, were can assign the 807.7 nm (1.5350 eV) peak to E/sub x/ peak of the free exciton emission, the 810.3 nm(1.5301 eV) peak to I₂ peak of donar-bound exciton emission and the 815.6 nm(1.5201 eV) peak to I₁ peak of acceptor-bound excition emission. In addition, the peak observed at 862.0 nm(1.4383 eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

Fabrication and characterization of CdS film, nanowires and nanobelts grown by VPE

  • Son, Moon-A;Lee, Dong-Jin;Kang, Tae-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.69-69
    • /
    • 2010
  • The research is the structural and optical characteristics of the Cadmium Sulfide(CdS) film, nanowires and nanobelts grown on the $Al_2O_3$ substrate using the vapor phase epitaxy method. The field-emission scanning electron microscopy(FE-SEM) were used to identify the shape of the surface of the nanostructures and x-ray diffraction(XRD) and transmission electron microscopy (TEM) were used to evaluate the structural characterisitcs. As a result, the XRD was confirmed the CdS peak and the substrate peak and TEM showed single crystals with wurtzite hexagonal structure on the nanostructures. As for the optical characteristic of the nanostructures, photoluminescence(PL) and micro-raman spectrum were measured. The PL measurements confirmed the emission peak related bound exciton to neutral donor($D^0X$) peak and free exciton(FX) peak. The micro-raman spectrum showed that the peak of the nanostructures were similar to the pure crystalline CdS peak and each peak were overtone of LO phonon of the hexagonal CdS of the longitudinal optical(LO) phonon mode. Therefore, it is confirmed that the CdS nanostructures grown in this research have superior crystallinity.

  • PDF

$CuInS_2$ 단결정 박막 성장과 광전기적 특성 (Growth and Optoelectrical Properties for $CuInS_2$ Single Crystal Thin Film)

  • 홍광준;이상열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.230-233
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuInS_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuInS_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.524\;{\AA}$ and $11.142\;{\AA}$, respectively. To obtain the single crystal thin films, $CuInS_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperature were 640 t and 430 t, respectively and the thickness of the single crystal thin films was $2{\mu}m$. Hall effect on this sample was measured by the method of van dot Pauw and studied on carrier density and temperature dependence of mobility. The carrier density and mobility deduced from Hall data are $9.64{\times}10^{22}/m^3,\;2.95{\times}10^{-2}\;m^2/V{\cdot}s$ at 293 K, respectively The optical energy gaps were found to be 1.53 eV at room temperature. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the thin film, we have found that the values of spin orbit coupling splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0211 eV and 0.0045 eV at 10 K, respectively. From PL peaks measured at 10K, 807.7nm (1.5350ev) mean Ex peak of the free exciton emission, also 810.3nm (1.5301eV) expresses $I_2$ peak of donor-bound exciton emission and 815.6nm (1.5201eV) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 862.0nm (1.4383eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

2H-$PbI_2$ 단결정의 엑시톤 반사 및 $A_{EP}$선에 관한 연구 (Exciton reflection and $A_{EP}$ line of 2H-$PbI_2$ single crystal)

  • 김현철;송인걸;유종인;유연석;나훈균
    • 한국광학회지
    • /
    • 제7권3호
    • /
    • pp.227-231
    • /
    • 1996
  • 2H-Pb $I_{2}$ 단결정의 반사스펙트럼을 10K에서 측정하였으며 기초흡수단 근처에서 n=1, 2, 3의 Wannier 엑시톤 계열과 $A_{EP}$ 선을 얻었다. $A_{EP}$ 선은 Nagamune 등의 보고와는 달리 라만스펙트럼의 2nd 포논에너지로부터 n=2 엑시톤과 2nd 포논의 결합상태로 생각된다. 또 2nd 포논은 이차 라만산란과정에서 LO 포논과 관련된 라만선으로 생각된다. Wannier 엑시톤 계열로부터 기상법으로 성장시킨 2H-Pb $I_{2}$ 단결정의 엑시톤 결합에너지와 반경은 각각 33meV와 14.angs.이었으며 n=1 엑시톤의 L-T 분리 에너지 값은 10K 에서 6.56meV로 동일 온도에서 측정된 발광스펙트럼에서도 같은 값으로 나타났다. 또 반사스펙트럼을 온도의 함수로 측정하였으며 그 결과 n=1 엑시톤의 반사선은 온도가 증가함에 따라 장파장 쪽으로 이동하였고 L-T 분리에너지가 증가하면서 엑시톤 반사선의 예리도도 감소함을 알 수 있었다.

  • PDF

A Study on photoluminescience of ZnSe/GaAs epilayer

  • Park, Changsun;Kwangjoon Hong
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.84-84
    • /
    • 2003
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low-temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, I$_2$ (D$^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3meV The exciton peak, lid, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy. The I$_1$$\^$d/ peak was dominantly observed in the ZnSe/GaAs:Se epilayer treated in the Se-atmosphere. This Se-atmosphere treatment may convert the ZnSe/GaAs:Se epilayer into the p-type. The SA peak was found to be related to a complex donor like a (V$\sub$se/ - V$\sub$zn/) - V$\sub$zn-/

  • PDF

Properties of photoluminescience for ZnSe/GaAs epilayer grown by hot wall epitaxy

  • Hong, Kwangjoon;Baek, Seungnam
    • 한국결정성장학회지
    • /
    • 제13권3호
    • /
    • pp.105-110
    • /
    • 2003
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low-temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_{2}$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV, The exciton peak, $I_{1}^{d}$ at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy. The $I_{1}^{d}$ peak was dominantly observed in the ZnSe/GaAs : Se epilayer treated in the Se-atmosphere. This Se-atmosphere treatment may convert the ZnSe/GaAs : Se epilayer into the p-type. The SA peak was found to be related to a complex donor like a $(V_{se}-V_{zn})-V_{zn}$.

A Study point defect for thermal annealed ZnSe/GaAs epilayer

  • 홍광준;이상열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.120-123
    • /
    • 2003
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low-temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_2$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV. The exciton peak, $I_1^d$, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy. The $I_1^d$ peak was dominantly observed in the ZnSe/GaAs:Se epilayer treated in the Se-atmosphere. This Se-atmosphere treatment may convert the ZnSe/GaAs:Se epilayer into the p-type. The SA peak was found to be related to a complex donor like a $(V_{Se}-V_{Zn})-V_{Zn}$.

  • PDF

Point-defect study from low-temperature photoluminescence of ZnSe layers through the post-annealing in various ambient

  • Lee, Sang-Youl;Hong, Kwang-Joon;Kim, Hae-Jeong
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.378-378
    • /
    • 2010
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low, temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_2$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV. The exciton peak, $I_l^d$, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy.

  • PDF