Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.1.17

PL Study on ZnO Thin Films After H-plasma Treatment  

Cho, Jaewon (Department of Electrophysics, Kwangwoon University)
Rhee, Seuk Joo (Department of Physics, Hankuk University of Foreign Studies)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.1, 2015 , pp. 17-20 More about this Journal
Abstract
The physical effects of H-plasma treatment on ZnO thin film have been studied using photoluminescence(PL) spectroscopy. Four characteristic peaks have been identified: (i) $D^0X$ peak (neutral donor-bound exciton), showing relatively small integrated intensity after H-plasma treatment, indicates that H-plasma passivates the neutral donors in ZnO at low temperatures. The rapid decrease in the integrated intensity of the peak as the temperature goes up is considered to be due to the ionization of neutral donors. (ii) H-related complex-bound exciton peak appears at the low temperatures (10 K~80 K) after H-plasma treatment, showing the same thermal evolution as $D^0X$ peak. (iii) FX (free exciton) peak starts to show up at 60 K and grows more and more as the temperature goes up, which is considered to be related to the increase in free electron concentration in the film. (iv) violet band is intensified after H-plasma, which means more defects and impurities are generated by H-plasma process.
Keywords
ZnO; Hydrogen; Plasma treatment; PL;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).   DOI
2 S. J. Xu, W. Liu, and M. F. Li, Appl. Phys. Lett., 77, 3376 (2000).   DOI
3 J. Cho, J. Choi, S. G. Yu, and S. J. Rhee, J. Opt. Soc. of Korea, 17, 543 (2013).   DOI
4 D. W. Hamby, D. A. Lucca, J. K. Lee, M. Nastasi, H. S. Kang, and S. Y. Lee, Nuclear Instruments and Methods in Phys. Res. B, 249, 196 (2006).   DOI
5 D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, J. Appl. Phys., 93, 3214 (2003).   DOI
6 Y. M. Strzhemechny, H. L. Mosbacker, D. C. Look, D. C. Reynolds, C. W. Litton, N. Y. Garces, N. C. Giles, L. E. Halliburton, S. Niki, and L. J. Brillson, Appl. Phys. Lett., 84, 2545 (2004).   DOI
7 M. D. McCluskey, S. J. Jokela, K. K. Zhuravlev, P. J. Simpson, and K. G. Lynn, Appl. Phys. Lett., 81, 3807 (2002).   DOI
8 Y. M. Strzhemechny, J. Nemergut, P. E. Smith, J. Bae, D. C. Look, and L. J. Brillson, J. Appl. Phys., 94, 4256 (2003).   DOI
9 Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. T. Hao, Appl. Surf. Sci., 201, 123 (2002).   DOI
10 H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyer, Opt. Mat., 23, 33 (2003).   DOI